
COMP534: Project3: 2.5D Matrix Multiplication using MPI

Dejan Grubisic

April 30, 2020

Abstract
This project implements the general version of the 3D matrix multiplication algorithm called 2.5D

matrix multiplication, discovered in 2011. by Edgar Solomonik and James Demmel [1]. This algorithm
is communication optimal and it trades some extra memory to alleviate the communication of the 2D-
Cannon algorithm. The implementation is based on MPI and the experiments are done for the different
number of processors ranging from 4 to 64 for different values of parameter c, which is the number of
copies of local sub-matrices. The time results are shown for matrix size 7500x7500. For correctness
proving and performance analysis, we used HPCToolkit and jumpshot4.

1. The problem statement and a short motivation for why solving this problem is useful.
Matrix multiplication represents an essential operation in linear algebra, which is widely used in
scientific computing. Unfortunately, the complexity of such operation is O(nk), where k ∈ [2, 3], and
for large matrices, the execution times could be unacceptably long. To make this computation faster,
it is necessary to use an efficient distributed algorithm and to optimize communication as much as
we can.
Cannon’s algorithm is the first and conceptually the simplest distributed algorithm for matrix mul-
tiplication. It is also called the 2D algorithm because it organizes all processors into one layer square
with side

√
P ×

√
P (Figure 1). In this example there is 9 processors that form matrix 3x3 and each

of processors take submatrix of
√

N
P ×

√
N
P elements.

Figure 1: Cannon 2D matrix multiplication

In the first step, every row of the first matrix A and every column of the matrix B is shifted circularly
on the left and to the up by row number and column number respectively. After this step, each

1

processor contains submatrices A and B that need to be multiplied to get the first partial result.
Once the local matrix multiplication is done, processors just shift to the left submatrices A and B
and calculate new partial results that add to the previous result. The algorithm terminates in

√
P

steps, with communication 2× N2

P . As the bandwidth is sum of all communications per each step we
get O(N2

√
P
).

The main goal of the 3D matrix multiplication algorithm is to lower communication if there is
additional memory for each processor. To use 3D algorithm we need to have enough memory to store
3 submatrices of size N

3√
P
× N

3√
P

. In this case, processors are layered in a cube with side 3
√
P . In

the beginning, we assume that starting matrices are stored in the first layer and the first step is to
propagate them to other layers (Figure 2). Once each layer gets its copy, they will perform the offset
step of Cannon’s algorithm but this time the offset will be increased by the layer number so that
each processor calculates a different partial result. After we calculate partial results we just need to
propagate them back to the first layer and sum up with other partial results.

Figure 2: The 3D algorithm for matrix multiplication

The total latency of communication, in this case, is logP as broadcast and reduce step could be done
in log 3

√
P time and we need O(1) time for circular shifts. The bandwidth, in this case, is O(N2

3√
P 2

) as
there are 3 communication steps in which every processor exchange their submatrices.
The problem with the 3D algorithm is that it assumes that each processor has O(N2

3√
P 2

) memory. For
large matrix, this is hard to achieve as necessary memory grows proportionally to the matrix size.
Luckily, all processors that have only c times more memory than for 2D algorithms can use 2.5D
algorithm with optimal communication.

2. The details of your approach and an explanation of how/why this approach solves your
problem.

The idea behind 2.5D algorithm is to create c layers with
√

P
c ×

√
P
c processors. As each layer

has N2 elements, each processor gets c × N2

P matrix elements. The workflow of the algorithm is
the combination of 3D and 2D algorithm. We first have to propagate submatrices like in the 3D

2

algorithm and to shift submatrices in each layer for their offset. After that there are
√

P
c3

rounds of

2D algorithm for each of c layers to sum up all of
√

P
c partial results. After the processors sum up

all partial results, they aggregate their results in the first layer.

Figure 3: The 2.5D algorithm for matrix multiplication

The latency of 2.5D algorithm is Ω(
√

P
c3
) as we distribute

√
P
c computations accross c layers. The

bendwidth is N2
√
Pc

as we are sending submatrices N√
P
c

× N√
P
c

, in
√

P
c3

steps.

MPI Implementation

MPI program starts with the initialization of ProcessInfo datastructure which stores the information
about process topology and ranks for each process inside it. As we already mentioned the process are
organized in c layers with each layer having P

c processors. Processes are connected by communicator
xy_comm across layers, and with c_comm accross c dimension.
After the setup of ProcessInfo, master thread creates N matrices with random values, divides the
matrices into blocks, and distributes them to other processes in the first layer by using function
MPI_Scatterv. To divide the starting matrix into blocks, we are defining a new MPI_Datatype
called blocktype. Blocktype is obtained from MPI_Type_vector with x and y coordinates set to the
number of elements inside a tile, while the third parameter is a distance in memory between each
row of the block.
MPI_Datatype blocktype ;
MPI_Type_vector (i n f o . t i l e_e l_s id e , i n f o . t i l e_e l_s id e , i n f o . mat_side ,

MPI_INT, &blocktype) ;
MPI_Type_create_resized (blocktype , 0 , s i z e o f (i n t) , &blocktype) ;
MPI_Type_commit(&blocktype) ;

MPI_Type_create_resized function just sets the bounds for each element of blocktype. After calling

3

MPI_Type_commit, the block type can be used in the rest of the program.
Function MPI_Scatterv takes the address of the distribution matrix, divides it in blocktypes, and
send it to different processors into sub_matrix buffer. Arrays counts and disps determine how many
blocktypes are be sent to each processor and at which index the subblock starts in full_matrix (Figure
4).

MPI_Scatterv (&fu l l_matr ix [0] , &counts [0] , &d i sp s [0] , b locktype ,
&sub_matrix [0] , i n f o . t i l e _ e l , MPI_INT, 0 , i n f o . xy_comm) ;

Figure 4: Blocktype

Once all submatrices from A and B are distributed, each processor in the first layer will broadcast
copies of their submatrices across communicator c_comm. At this point, all processors have their
copy of data, and the next step is to calculate offsets for their submatrices based on their ranks.
For submatrix A - shift circular left for the row number and shift right for the

√
p_layer. For

the submatrix B shift circular upper for the column number and shift bottom for
√
p_layer, where

playerisnumberofprocessorsinthelayer.ThesecircularshiftsareimplementedbyfunctionMPI_Sendrecvwhichtakesapointertothesendandreceivebufferandsends/receivesallelementsinthetiletospecifiedprocessorsacrossthecommunicatorxy_comm.Forsend_buffthereareAorBsubmatricesandforrecv_bufferweuseadditionalspaceproportionaltosubmatrix.AfterMPI_Sendrecvfunction,weareswappingthereceivedmatrixwithstartingAorBsubmatrix.ThecostofswapfunctionisO(1)asC++implementationjustswapsthepointers.

MPI_Sendrecv(&send_buff [0] , i n f o . t i l e _ e l , MPI_INT, send_to , 0 ,
&recv_buf f [0] , i n f o . t i l e _ e l , MPI_INT, recv_from , 0 , i n f o . xy_comm, s t a tu s) ;

swap (send_buff , recv_buff) ;

When processors exchange submatrices, they are ready for sequential matrix multiplication on them.
When this step is done, all processors across communicator c_comm has the partial result for one
tile. If the c < 3

√
P , there are

√
P
c3

additional partial results to be calculated for each processor. To
calculate these results the algorithm is making the simple right and bottom circular shift on A and
B submatrices and accumulates locally their matrix multiplication.
When all partial results are calculated and summed up locally, the algorithm sends them to the
processors from the first layer, where the contributions from all processors from dimension c are
summed up. At this point, the final matrix C is calculated and its subblocks are distributed across
the processors in the first layer. To send it back we can use function MPI_Gatherv that accepts the
same parameters as already explained MPI_Scatterv and combine submatrices to recreate the final
matrix in the processor with rank 0.

4

3. A description of the experiments you conducted. Give the quantitative and qualitative
analysis of your results.
Experiments had been conducted on 4, 8, 9, 16, 25, 27, 32, 36, 64 nodes for the appropriate value
of c on the architecture given in Appendix(Table 1). Time results are shown in Figure 5. From
the given charts, we can conclude that speed mostly depends on the number of processors and the
hardware architecture we are using. The value of c doesn’t change execution speed in this case and
other characteristics of hardware architecture and interconnect overlay the acceleration contributed
by c.

Figure 5: Execution time and Parallel Efficiency

To calculate Parallel Efficiency we calculate matrix multiplication sequentially on one node. From
the Parallel Efficiency plot, it seems that for configuration of 4 ranks and c equals to 1 we get a
superlinear speedup. The reason for this could be the additional cache memory that we get with
each new processor included in the computation. On the other hand, with more ranks, communication
increases a little bit so we have a decreasing trend of parallel efficiency.
Jumpshot4 results
For visualization of MPI execution and the communication between ranks, we used a tool called
Jumpshot4. In Figure 6 we can full execution time with the legend on the top, zoomed the first
phase in the middle, and zoomed the middle phase on the bottom. Based on the top figure we
can see that the computation is divided into two part-pure lines without color, while there is some
communication at the beginning, in the middle, and on the end.
When the program starts, the processor with rank 0 needs to distribute A and B matrices to other
processors from the first layer. This is done with MPI_Scatterv colored in pink and we can see the
steps pattern that refers to this in the middle figure. Yellow stands for MPI_Barrier and we can see
that all ranks from the second layer go straight there while ranks from the first layer go there when
they got their submatrix. At this point, the 2.5D algorithm starts. Firstly, ranks calculate their
offset and the ranks from the first layer broadcast their submatrices to their neighbors in c dimension
(Bcast is colored in light blue). When all ranks get submatrices they do a collective shift colored in
green.

5

Figure 6: Jumpshot4 results for P=32 N=7500 c=2

6

At this point, all ranks got their submatrices and they perform local matrix multiplication on them
to create the first partial result. Some ranks are going to finish this multiplication before others
because some of them are sharing the same core, which is defined by the affinity parameter. This
behavior could be seen on the bottom figure in green strides in which faster threads are waiting
slower to perform shift operation. After collective shift operation on each layer, ranks are doing
again sequential matrix multiplication on new tiles. Finally, ranks sum up partial results from two
computation steps and send them back to the ranks at the first layer which sums up the contribution
of each layer. This is done in MPI_Reduce colored in violet.
HPC Viewer results
The experiments with HPCToolKit are done in the same configuration as jumpshoot4 (P=32, N=7500,
c=2) with sampling CPUTIME which shows the time spent inside the program. From the HPC
Viewer tool (Figure 7), we can see that 51.1% is spent inside the program root that means that
MPI runtime takes the rest of the time. Inside mm2_5d function, the program spends 4.44% and
the majority of the time is spent inside matrix_mult_seq and matrix_multadd_seq, 21% and 20.9%
respectively. This behavior is expected because both of these steps represent the calculation of partial
results.

Figure 7: HPCToolkit Viewer results for P=32 N=7500 c=2

From the HPC Traceviewer, we can see similar shapes like in jumpshot4 with much more details
regarding call stack(Figure 8). Again we can see a distribution of submatrices at the beginning, first
computation(grey colored), collective circular shift, the second computation, and reduction at the
end.

7

Figure 8: HPCToolkit TraceViewer results P=32 N=7500 c=2

4. Conclusion This project implements and analyses the MPI implementation of 2.5D matrix-multiplication.
In this report, we showed the 2.5D algorithm, its implementation in the MPI parallel model together
with results and visual representation from Jumpshot4 and HPCtoolkit.
From shown results, we can conclude that tuning parameter c does not particularly accelerate the
algorithm on the given architecture. The speed of the application mostly depends on the number of
processors and how MPI ranks are scheduled across them. If only one processor is delayed due to
slower hardware or conjecture for CPU resources all other threads will stall due to collective shifts
that happen before each computation step. Using Jumpshot4 and HPCTraceviewer tool enabled us
to see this behavior and understand the cause of performance bottlenecks.
MPI programming model enables convenient development of distributed applications with many build
in details of each primitive that a developer needs to know if we want to achieve the best performance.
The MPI Runtimes provides a convenient abstraction for collective communication which includes
often-used patterns like distribution on a matrix to block-submatrix and global circular shift for a
communicator. However, MPI runtime constitutes about 50% of execution time, and therefore is
important to understand it under the hood.

8

A Apendix

Proc Specifications
Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian

CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 12

Socket(s): 2
NUMA node(s): 2

Model name: Intel-Xeon(R) CPU E5-2650 v4 @ 2.20GHz
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 30720K

NUMA node0 CPU(s): 0-11,24-35
NUMA node1 CPU(s): 12-23,36-47

Table 1: Architecture

References
[1] Edgar Solomonik and James Demmel, Communication-optimal parallel 2.5D matrix multiplication

andLU factorization algorithms, https://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-
10.pdf

9

