
COMP 534: Project 1: Parallel Exploratory Search using Cilk Plus

Dejan Grubisic

February 16, 2020

Abstract

This project implements an parallel algorithm for game Othello (also known as Reversi) based on
Cilk Plus model. The algorithm for creating a move is based on exploratory search of possible moves
and evaluating the board position after defined search depth. The rules about this game could be found
here [1]. The experiments are done for 1 to 32 cores for the lookahead depth from 1 to 7 moves.

1. The problem statement and a short motivation for why solving this problem is useful.
The game Othello consists of alternating moves selection for two opponent players. In order to
find the best move, the algorithm explores all possible moves up to some level and uses Mini-Max
algorithm 1 to calculate the best move for a player on each level in the search tree.

Figure 1: Exploratory search tree

Based on [2] average branching factor for the game Othello is about 10. This means that with each
new level in the search tree there are 10 times more boards to explore. Consequentially, the execution
time of the sequential implementation grows exponentially and it becomes impossible to deepen the
search tree, without some additional technique like alpha-beta pruning [3]. Even with using the
pruning, there is still the opportunity to exploit available parallelism and the program even faster.
Due to the nature of exploration tree, this problem represents a good example of problem suitable
for parallel implementation and understanding the compromises in parallel algorithm design.

2. The details of your approach and an explanation of how/why this approach solves your
problem.
In order to maximally utilize available parallelism, it is necessary to spawn tasks as soon as possible
at the granularity at the level that will keep all available processors busy. Possible bottleneck could
be near the root of the search tree 1, as there are no enough work for all threads. Because of that,
the parallel algorithm spawns all tasks (board positions) first N levels. On the other hand, every task
introduces some overhead and it is not beneficial to spawn the tasks any further, once we achieve

1

enough parallelism to employ all threads. Based on empirical evidence, spawning depth = 4 gave the
best results.
The idea for the algorithm is to recursively spawn negamax algorithm [4], immediately after the
algorithm finds possible move. In this way, the algorithm makes available a new branch in the tree to
be explored and shorten the critical path compared to situation when it first finds all possible moves
and then spawn computation.
For calculating the best move from a node, the negamax algorithm finds maximum value from all of
it’s children. To be able to collect the results from the children nodes in parallel and keep deterministic
result, the algorithm uses reducers. Every time a node depth is less than specified it creates reducer
that collects the results from children nodes. In this implementation the reducer is implemented as
cilk::reducer_max_index<Board, int>, so that it collects not only the sco

Pros re of the best move, but also it’s board-position. This way it is possible to return to root of the tree
the next move position together with it’s evaluated value.

Figure 2: Negamax algorithm

If there is no legal moves, the algorithm needs to check few more conditions. If node is root node
and there is no legal moves there is no need to explore the tree at all and the algorithm returns
false, which means that opponent plays. If there is no legal moves and there wasn’t legal moves for
opponent in the move before the algorithm should evaluate the position as that is end of the game.
Otherwise, the algorithm searches for opponent move in the tree on the same depth. The sketch of
the algorithm is shown on the figure 2.
In this implementation could also parallelize functions like EnumerateLegalMoves that finds neigh-
boring squares to opponent player and FlipDisks that tries to connect that squares with pieces for

2

given color. In the both cases, parallelization would make even more fine grained task which would
increase overhead. Due to this reason, the algorithm implements creates granularity on board level.
The algorithm is additionally improved by implementing the evaluation function such that gives more
points to pieces on the edges of the board. This lead to choosing moves that puts pieces on the edge,
which make smaller number of possible moves and decreases amount of the work.

3. A description of the experiments you conducted. Give the quantitative and qualitative
analysis of your results.
Time Results
Implemented parallel algorithm is tested on Intel-Xeon-Gold-6126@2.60GHz with 48 CPUs. The
first experiment measures the influence of the spawning level 1 on the parallel efficiency. The arallel
program has been run on 1 to 16 cores with lookahead 7 and obtained results are shown in figure 3.

Figure 3: Parallel Efficiency

From the figure 3 we can conclude that the best efficiency is for spawn level 4, and the worst is level 0,
which means that only root spawns parallel computation while all other nodes are done sequentially.
On the other hand, if the algorithm spawns every computation in parallel, it will again perform
worse, due to task overhead (10 % worse than spawn level 4).
In the figure 4 it is represented time for lookahead 7 and spawn level 4. From this figure we can see
the benefit of parallelization. By looking at user time, we can conclude that there is no much more
additional work as a consequence of parallelization. More precisely it differences only by a constant
factor from sequential implementation, which mean that the parallel algorithm is work optimal.

1All levels between the root and spawning level are spawned in parallel, while all levels from spawning level to leaves are
executed sequentially

3

Figure 4: Parallel Efficiency

Cilkviewer Results
The second experiment was based on Cilkview analysis of the program. For this experiment there
are measured parallel characteristics of the implemented program with the lookahead depth from 1
to 7 and spawning depth 4 on 8 cores. Table 1 describes whole program statistics. From these results
we can see increase of both performed work and parallelism with increasing the lookahead depth.
The span is slightly increasing because of the need to collect data deeper in the tree, while burden
span has higher increase rate, which is the consequence of task creation overhead. Number of atomic
instruction grows the same as the number of spawns / sync because every spawn creates a atomic
counter that finds maximum score of children tasks. Average number of instructions per strand has
minimum for lookahead 4, because the program spawns every node in parallel for the first 4 levels.

Whole Program Lookahead depth
Statistics 1 2 3 4 5 6 7
Work(M): 6.8 15.3 36.4 491 2,165 18,890 150,593
Span(M): 6.6 7.2 7.6 7.9 8.7 8.8 9.4

Burdened span(M): 13.6 26.6 26.3 39.6 45.9 50.6 59.2
Parallelism: 1.02 2.11 4.78 61.51 246 2136 15881

Burdened parallelism: 0.5 0.58 1.39 12.40 47.12 372 2540
Number of spawns/syncs: 464 7,688 19,291 402,215 1,460,755 15,245,951 110,512,623

Avg instr/strand: 4,890 665 630 407 494 413 454
Strands along span: 929 2,459 2,173 3,725 4,153 4,445 4,479

Avg instr/strand(span): 7,179 2,955 3,515 2,145 2,112 1,989 2,117
Tot num atomic instr: 764 7,989 19,592 402,516 1,461,056 15,246,252 110,512,924

Frame count: 928 15,380 38,592 804,444 2,922,018 30,496,812 221,029,264

Table 1: Whole Program Statistics

4

Cilkview provides also the scalability information which is presented in Table 2. Based on this result
we can see that with increase of both lookahead depth and number of processors, rises the estimated
speedup. If lookahead depth is small there will be no enough work for all threads. On the other hand,
when the number of workers are small it is impossible to get speedup higher than their number, by
the Cilk model.

Lookahead depth
Proc 1 2 3 4 5 6 7

2 0.45 - 1.02 0.45 - 1.02 0.90 - 2 1.76 - 2 1.90 - 2 1.90 - 2 1.90 - 2
4 0.36 - 1.02 0.41 - 2.11 0.85 - 4 2.83 - 4 3.61 - 4 3.80 - 4 3.80 - 4
8 0.32 - 1.02 0.37 - 2.11 0.83 - 4.78 4.08 - 8 6.39 - 8 7.60 - 8 7.60 - 8
16 0.31 - 1.02 0.35 - 2.11 0.82 - 4.78 5.23 - 16 10.38 - 16 14.98 - 16 15.20 - 16
32 0.30 - 1.02 0.35 - 2.11 0.82 - 4.78 6.09 - 32 15.11 - 32 28.04 - 32 30.40 - 32
64 0.30 - 1.02 0.34 - 2.11 0.82 - 4.78 6.64 - 61.51 19.55 - 64 49.72 - 64 60.80 - 64
128 0.30 - 1.02 0.34 - 2.11 0.82 - 4.78 6.95 - 61 22.93 - 128 81 - 128 117 - 128
256 0.29 - 1.02 0.34 - 2.11 0.82 - 4.78 7.12 - 61.51 25.10 - 246 118 - 256 218 - 256

Table 2: Whole Program Statistics: Speedup

Table 3 gives the result from the analysis of the parallel regions. Work, number of atomic oper-
ation and number of spawns remain the same, while parallelism and burden parallelism increases
more. Spawn and burden spawn are lower than whole program statistics, because they don’t include
sequential regions between searching for the moves.

Parallel Region(s) Lookahead depth
Statistics 1 2 3 4 5 6 7
Work(M): 0.64 9.2 30.3 485 2.159 18.884 150.587
Span(M): 0.5 1.1 1.4 1.8 2.5 2.6 3.3

Burdened span(M): 7.4 20.4 20.1 33.5 39.7 44.5 53.1
Parallelism: 1.28 8.23 20.75 263.32 839 7034 45304

Burdened parallelism: 0.09 0.45 1.50 14.49 54.31 424.16 2834.59
Number of spawns/syncs: 464 7,688 19,291 402,215 1,460,755 15,245,951 110,512,623

Avg instr/strand: 464 399 523 402 492 412 454
Strands along span: 464 1,229 1,086 1,862 2,076 2,222 2,239

Avg instr/strand(span): 1,086 910 1,344 989 1,239 1,208 1,484
Tot num atomic instr: 764 7,989 19,592 402,516 1,461,056 15,246,252 110,512,924

Frame count: 928 15,380 38,592 804,444 2,922,018 30,496,812 221,029,264
Entries to par reg: 60 60 60 60 60 60 60

Table 3: Parallel Region(s) Statistics

Speedup estimate for parallel Regions statistics (Table 4) mainly differences with whole program
statistics by higher increasing of values, especially in situations with higher number of processors and
deeper searching tree. This advocates the good utilization of parallelism, when searching depth is
higher than 3.

5

Lookahead depth
Proc 1 2 3 4 5 6 7

2 0.10 - 1.28 0.42 - 2 0.94 - 2 1.79 - 2 1.90 - 2 1.90 - 2 1.90 - 2
4 0.07 - 1.28 0.32 - 4 0.91 - 4 2.96 - 4 3.66 - 4 3.80 - 4 3.80 - 4
8 0.06 - 1.28 0.29 - 8 0.90 - 8 4.39 - 8 6.56 - 8 7.60 - 8 7.60 - 8
16 0.05 - 1.28 0.28 - 8.23 0.89 - 16 5.80 - 16 10.89 - 16 15.09 - 16 15.20 - 16
32 0.05 - 1.28 0.27 - 8.23 0.89 - 20.75 6.90 - 32 16.24 - 32 28.46 - 32 30.40 - 32
64 0.05 - 1.28 0.27 - 8.23 0.89 - 20.75 7.63 - 64 21.53 - 64 51.10 - 64 60.80 - 64
128 0.05 - 1.28 0.27 - 8.23 0.89 - 20.75 8.05 - 128 25.73 - 128 84 - 128 118 - 128
256 0.05 - 1.28 0.27 - 8.23 0.88 - 20.75 8.28 - 256 28.50 - 256 126 - 256 222 - 256

Table 4: Parallel Region(s) Statistics: Speedup

Results from HPCToolkit
The third experiment was based on HPCToolkit tool for profiling and collecting the traces from
execution with lookahead 7 with spawning depth 4 on 32 cores. The obtained results are presented
by using hpcviewer(Figure 5) and hpctraceviewer(Figure 6) visualization tools. The upper part of
the figure 5 shows top-down view in hpcviewer that shows the critical part of the code for the
performance. In this case that is function TryFlips that is used in finding possible moves. From
bottom-up view it can be seen the callpath in which the program spends the majority of its time. In
this case it could be seen a chained recursive call to FlipDisk function, that calls TryFlip function.
This behavior is expected because the larger amount of the time is spent on provided functions that
are used for finding positions in the deeper level in the search tree.

Figure 5: Hpcviewer data

6

Figure 6: Hpctraceviewer data

7

Hpctraceviewer provides us with the collected traces and their callstack (Figure 6). From the upper
part it could be seen that FlipDisk function takes the most of the execution time. From the Depth
View we can see deep recursive call(colored light green) that is consistent with what could be seen
from cilkview.From the Summary View on bottom part we can seen the percentage of time spend in
functions and once again FlipDisks together with TryFlips dominate execution time.

4. Conclusion This project implements and analyses the parallel version of othello board game. In
this report there are shown the idea behind parallel algorithm, time results, cilkview analysis and
hpctoolkit results. For time analysis, it is performed the experiment that analyse the spawning depth
in searching tree with lookahead 7. The experiment is performed for each 1 to 16 cores. The best
execution time is achieved with spawning depth 4. The second experiment shows the results from
cilkviewer program. These results includes static data about program parallelism. Based on this
results the implemented program could be considered as scalable with high expected speedup for the
lookahead deeper than 3.
From the results obtained from hpctoolkit, it could be seen that the main bottleneck is in FlipDisk
and TryFlips functions that are calculating possible moves for some position. To make the code even
faster it is necessary to optimize the sequential version of these two function. Nevertheless, their
parallelisation would not gain any more benefit as they are executed at fine grained level in the every
node in the search tree.

References
[1] https://en.wikipedia.org/wiki/Reversi

[2] https://www.sciencedirect.com/topics/computer-science/branching-factor

[3] https://en.wikipedia.org/wiki/Alpha

[4] https://en.wikipedia.org/wiki/Negamax

8

