
Lab 3 Questionnaire Comp 412, Fall 2019

Name: Dejan Grubisic

Net ID: dx4

Date Submitted: Dec. 5

Implementation Discussion

1. Briefly describe the key design decisions you made in building your
scheduler. Do not include a detailed description of the data structures,
classes, fields, and methods that you implemented.

In the core of building scheduler in this project is dependence graph data
structure, that contains all information about each instruction and their
dependence to previous instructions. Direct (reg. define ->reg. use)
dependence are easy to construct directly from address of used registers, but
the main difference in scheduling make IO dependences (load, store, output).

For this it is necessary to propagate constants from loadI instruction and to
‘emulate memory’ with hash map. If there are loads from addresses unknown
to hash map, we have to assume that this value can be anything. The main
data structures for making IO dependencies is listIO that includes <line_num,
opcode, mem_loc>. This list will contain all load, store, output instructions in
executing order of ILOC code, with joint information about addresses they
use. For each of instructions in the list the scheduler iterates backward until
it finds another instruction with location possibly same as it’s location.

2. How did you implement the ready and active queues (or lists, or sets, or …) ?

The Ready queue is implemented as priority queue (C++ set) with elements
pair <priority, ins_id> sorted in descending order by priority. In this way the
scheduler doesn’t have to go to far when choosing next instruction.

The Active queue is implemented as multi-queue (C++ multiset), that
contains pair<finish_cycle, ins_id> as members, so that finish_cycle stands for
cycle in which some dependence towards the instruction with ins_id will
become finished. As every instruction knows how many input edges it has, it
will just increment counter for every dependence from active queue and put
it into Ready queue when that count is the same as number of input edges.

3. What priority function or functions does your scheduler use to determine
which operation to schedule next? Does it use any tie-breakers? How does

your scheduler ensure that the restricted operations—that is, load, store, and
multiply—are scheduled legally? 1

In this project scheduler implements several heuristics on choosing the next
instructions. It prioritizes load over store for the first functional unit, because
the it tries to avoid store before load/output dependency that has latency of 5
cycles, while if store goes after all load/store/output instruction latency is
just 1 cycle. Nevertheless, load and store has priority over all other
operations for the first functional unit.

For the second functional unit mult has the greatest priority over all valid
operations for that unit.

For the output operation this scheduler puts the lowest priority, simply
because it doesn’t open opportunity to make ready some other instruction.

4. Does your scheduler perform any pruning on the dependence graph? If so,
explain how you determine that an edge is not needed and any analysis that
your scheduler performs to support that decision.

Yes, once the dependence graph is constructed with all dependencies, the
scheduler is trying to prune IO edges come from loading value from some
unknown location. For this, the scheduler puts some initial value like 11111
for the unknown value, makes propagation of that value all other values are
known and writes that into load and store nodes that use that as address. In
the second step, the scheduler just check all load/store operation with
previously unknown addresses and if there is IO edge between that and some
other instruction with different address, it delete that edge, and iterates the
listIO mentioned before to check if there is some dependency with some
previous instruction.

5. State the asymptotic complexity and expected case complexity of your
register scheduler.

The overall complexity should be linear in terms of instruction counts.
Creating dependence graph, computing priority, proving different unknown
addresses and scheduling take linear time each, so the total complexity stays
also linear .

1 That is, no cycle can contain two or more operations drawn from the set { load, store } or
two multiplies.

Effectiveness refers to the speed at which
the allocated code runs.

Efficiency refers to the speed at which your
scheduler runs.

Quantitative Results

Insert Table 1 and Table 2 (described in the lab handout)

1. With reference to Table 1, which shows the effectiveness of your scheduler:

a. Discuss the results. In particular, how well did your scheduler perform
versus the reference implementation in terms of correctness and
effectiveness? Justify your answer quantitatively.

The implemented scheduler gave all correct answers to gives slightly faster
code than reference implementation.

b. Were there blocks where you felt your scheduler did particularly well?

The scheduler performs particularly well in the situations with unknown
memory location in advance.

c. Were there blocks where you felt your scheduler did particularly poorly?

I have not find such block.

Input schedule lab3_ref Difference Input schedule lab3_ref Difference

Block (cycles) (cycles) (percent) Block (cycles) (cycles) (percent)

report1.i 25 25 0% report13.i 25 25 0%

report2.i 23 23 0% report14.i 19 19 0%

report3.i 26 26 0% report15.i 25 23 9%

report4.i 33 33 0% report16.i 44 57 -23%

report5.i 25 25 0% report17.i 22 21 5%

report6.i 43 43 0% report18.i 18 22 -18%

report7.i 32 36 -11% report19.i 38 42 -10%

report8.1 15 15 0% report20.i 22 22 0%

report9.i 26 26 0% report21.i 69 72 -4%

report10.i 41 40 3% report22.i 50 52 -4%

report11.i 30 30 0% report23.i 67 69 -3%

report12.i 21 21 0% dx4.i 45 60 -25%

Table 1: Total Cycles Required for Lab 3 Report Blocks & Submitted Block *

lab3_ref schedule

1000 0.003401 0.011499

2000 0.003632 0.019476

4000 0.005167 0.036017

8000 0.008042 0.069876

16000 0.014152 0.137803

32000 0.02542 0.276947

64000 0.047866 0.56158

128000 0.101635 1.161942

Scheduling Time (seconds)

Table 2: Scheduler Timing Results

Input (lines)

d. What changes did you make to your scheduler to improve its effectiveness?

Constant propagation for determining IO dependences, several heuristics in
choosing between ready instruction and proving different address for reading
from unknown location.

2. With reference to Table 2 and your graph:

a. How well did your scheduler perform versus the reference implementation
in terms of efficiency? Justify your answer quantitatively.

If your scheduler is written in C, C++, Java, Haskell, OCaml, Python, Ruby, or
R, refer to the scheduler timing results shown in § A-4 of the lab handout
when discussing the impact of your programming language choice on the
efficiency of your scheduler.

The scheduler is written in C++ and perform few times worse than reference
implantation. This is probably because of making optimizations separately
instead.

b. If your scheduler is less efficient than the reference implementation, discuss
the design decisions that you made when implementing your scheduler that
are most likely to account for the difference in efficiency.

In the first implementation the edges in the dependence graph were
implemented with std::list, and during their update while adding IO edges
the scheduler iterated through all list, that make impossible scheduling of
examples from Timer benchmark. In the latest implementation that has been
changed to hashmap and the scheduling become possible in less than a
second for 100K instructions.

To improve implementation further, it will be beneficial to schedule
instructions on the block level (for example 50 instructions by 50
instructions). That would make better locality and memory allocation.

c. Are the timing results for your scheduler consistent with the complexity
analysis that you gave earlier? If not, explain why they are different. Justify
your answer.

Yes, from the Timing results it could be clearly seen that scheduler works in
linear time.

Experience

1. Did your implementation experience change your plans or your algorithms?

This implementation come through several stages, with each new optimization
and improving in data structures.

2. Based on your experience, would you use the same algorithm if you had to start
from scratch? If not, what would you do?

This algorithm gave good results, but it would be wise to discuss about other
algorithms with better locality like peephole.

3. How did your choice of implementation language affect your ability to complete
the project on time?

C++ is a good choice because it provides all needed data structures and tools for
development.

4. What advice would you give future COMP 412 students embarking on Lab 3

Start early, because once you start working, you will always want to implement
some new optimization, for which you will not have time if you start later.

