
NBME - Score Clinical Patient Notes
And how to find the key features from patient notes

Dejan Grubisic & Davyd Fridman
Kaggle_id comp540_dx4_df21

Feb 1. - May 3. 2022.

Comp 540 Statistical Machine Learning, Rice University

photo credit:
https://www.istockphoto.com/photo/stethoscope-and-medical-record-on-white-background-gm852432794-140066639

ROADMAP
PROBLEM DESCRIPTION 2

EXPLORATORY DATA ANALYSIS 3

SIMILARITY MODEL 5

BERT MODEL 7

Train Bert in a semi-supervised fashion by masking words on unlabeled 8
Patient notes dataset

Add Final layers on top of Bert to specialize it for our task 9

Full-scale training 10

NEXT STEPS 11

CONCLUSION 12

EXPERIMENTS 13

1

PROBLEM DESCRIPTION

In medical practice doctors always write notes about the patient's current state. What are

the symptoms of the problem, what is the physical condition of the patient, what medications

were used, what life situations the patient is encountering, and so on. These notes were collected

into patient notes history, which can be used in the future as a prior to treatment evaluation for

the future problems.

Doctors used to write those without particular structure in pure text form, which makes it hard to

automatically process and use for treatment evaluation. In this project, we are building a

machine learning model that will take patient notes and output a set of features with start and end

positions where it occurs in the given patient note. Here is one example.

Figure 1: Problem illustration

In our problem, we are trying to extract 143 features from the given patient note. We have a
collection of about 40,000 Patient notes describing 10 medical cases, of which about 14300 are
labeled with features’ offsets.

2

EXPLORATORY DATA ANALYSIS

We started by looking at EDA :1

Each patient note belongs to a specific case. There are 10 cases and for each case, there is a
multitude of patient notes. In other words, each doctor took a patient note for the 10 different
cases. From Figure 2 below, we can see we have the most notes for case 3 while case 1 has the
least patient notes.

Figure 2: Number of patient notes for
each case

Figure 3: Length of patient notes

Next, we have the length of each patient note in Figure 3. Patient notes are the information related

by the patient to the notetaker. Most patient notes have between 600 and 1000 characters. Each
notetaker describes cases in their own way, hence such spread in the length. As a result, the same
features may be described using different words.

Next, we look at the number of features corresponding to each case. As we can see, certain cases
require the incorporation of more features than others. This suggests certain cases are more
complicated and require more information about their symptoms, lifestyle, family history of the
disease, and so forth.

1 https://www.kaggle.com/code/odins0n/nbme-detailed-eda

3

https://www.kaggle.com/code/odins0n/nbme-detailed-eda

Figure 4: Distribution of features for each
case

Figure 5: Length of feature annotations

Finally, we observe the length of each feature. Each feature describes very different matters
including gender, daily routines, habits, family disease history, and medications are taken. The
length of each feature ranges from a word to a couple of words. As a result, we can see that the
vast majority of features have a length of 30 characters or less.

4

SIMILARITY MODEL

In this chapter, we will describe the simple similarity model, which uses the principle of K-nearest

neighbors to determine if the given string is the feature or not.

On the high level, we divided the task into 3 parts:

● Designing a tokenizer for dividing patient notes into “simple sentences”
● Creating a unique set of features’ annotations for each feature
● Comparing each “simple sentence” from the patient note with each unique feature’s

annotations and deciding if the simple sentence should be labeled with given feature

To implement the tokenizer we had first to understand the structure of the data. In Prepare
Patient Notes module, we corrected some grammatical errors from patient notes and develop
functionality for splitting patient notes into the list of “simple sentences”, which will correspond
to feature annotation. This part was particularly challenging since many patient notes were not
having ‘.’ at the end of the sentence. Some patient notes were using ‘;’ ‘,’ ‘ ’, ‘and’ or ‘\n’
instead of ‘.’. We mapped all of these to ‘.’ and split text on that basis. In Prepare Training Data
module we used these patient notes to append to train.csv data for the given training example.

Figure 6: Similarity model pipeline

In the next step, we created a similarity model which contains the most diverse parts of patient
notes that describe each feature. The idea behind this was that by having enough diverse
examples of a feature, we will be able to decide if a certain sentence should be classified as that

5

feature or not. For this step we used NLP. similarity function from spacy library to get a distance2

metric between two sentences. The output of this process was a dictionary with feature_ids as
keys and a list of unique sentences as values.

Figure 7: Similarity model inference

In the Similarity Model Inference modules, we used unique feature annotations to decide if a
given feature is present in patient notes or not. We did that by applying the similarity function
between each unique feature annotations with each “simple sentence” and if the similarity is
bigger than 0.9 we would associate the given feature with that “simple sentence” together with
the similarity. We did this for each example of patient_note.csv and saved it for further use.

In Similarity Model Evaluation we compare features we associated with patient notes with
features associated with patient notes from train.csv. By analyzing the predictions from the
similarity model we noticed 2 problems with the current approach:

1. Similarity function doesn’t work as expected:

Figure 8: High similarity for dissimilar sentences

2 https://spacy.io/

6

Figure 9: Low similarity for similar sentences

2. Problems with Text to “simple sentences” sequencer:
a. Tokenizer based on symbols is not able to separate “17-year-old male” into

“17-year-old”, “ male”
b. Tokenizer would split “high pressure and temperature” into “high pressure”,

“temperature” and we would lose the adjective “high” for temperature

As a result, we turned to a different approach based on a BERT model.

BERT MODEL
In our later submissions, we used the BERT model to tokenize the sentences. BERT is a

bidirectional transformer that takes context into account. BERT creates embeddings for

each word in a sentence, this way words with similar meanings have close euclidean

distance. As a result, we can tokenize all of the patient notes and find the location(s) in a

particular note that has the meaning most closely related to a specific feature.

Figure 10: Tokenizer and Bert model applied to our problem

7

To familiarize ourselves with the Bert model and define a baseline we started from the

[NBME]BERT_for_beginners model which had initial accuracy of 0.695. Once we figured

out how Bert works, two ideas came to our mind about how we can improve it:

1. Train Bert in a semi-supervised fashion by masking words on unlabeled Patient

notes dataset

2. Add Final layers on top of Bert to specialize it for our task

Train Bert in a semi-supervised fashion by masking words on unlabeled

Patient notes dataset

BERT is pretrained on a large corpus of English data from Wikipedia and other resources

not specific to medical data. This is why the model sometimes struggles to find

similarities between sentences from medical vocabulary. To fix this we were trying to

re-train Bert with all Patient notes data by using masking of the random word.

Figure 11: Tuning Bert to medical-specific text

We were following the tutorial, but once we realized that training such a large model as

Bert will take more time and resources than we have, we decided to use a pretrained

model from Kaggle.

8

https://www.kaggle.com/code/tomohiroh/nbme-bert-for-beginners
https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/chapter7/section3_pt.ipynb#scrollTo=5V6qeo9KNQMg

Add Final layers on top of Bert to specialize it for our task

In our final step we used the leading pre-train model from Roberta Strikes Back ! as our base
model and expand it with an extra Head network. Roberta Strikes Back! contains both tokenizer
model and “nbme-roberta-large” model with one extra linear layer at the end and sigmoid
activation function. It works with a maximum of 310 tokens and has 1024 nodes in the last
hidden layer. The accuracy of the model was 0.882.

Figure 12: Fine-tuning Bert model

We started with the fully connected neural network with 3, 5, and 7 hidden layers, having 20,
100, or 200 nodes per layer. Each hidden layer has a leaky_relu activation function and a dropout
factor of 0.2 for regularization and robustness. For gradient descent, we used the Adam optimizer
with weight decay, since it was proven better than the original Adam optimizer . For the loss3

function, we used BCEWithLogitsLoss, since it combines logits and sigmoid function which is
exactly what we need at the end of our network. We trained all networks on the Kaggle website
with GPU turned on.

Figure 13: Head Network architectures

To find the optimal parameters we split training data(1000) into training and validation sets of
proportions 0.8 and 0.2 respectively, and 7 train the model for a different number of hidden

3 https://towardsdatascience.com/why-adamw-matters-736223f31b5d

9

https://www.kaggle.com/code/theoviel/roberta-strikes-back

layers and nodes per layer. We were running 10 epochs and collecting the loss of validation loss.
Each experiment took about 10 minutes. Here are the validation results for both networks. Here
we can see that the validation score is best for the shallowest network which means that it was
easier to tune fewer parameters. This network is capable of predicting accurately feature
annotation for the test set (check here).

Besides this we noticed that the first network with 7 hidden layers and 20 nodes per layer
predicts the whole patient note as a feature annotation, so performing the experiment on a higher
number of neurons and the same data wouldn’t improve the situation. For more information
check the Experiments section.

Figure 14: Minimum validation loss for 2 architectures

The second network consists of blocks with averaging layers that are used to prevent vanishing
gradient problems. Additionally, we use clip_grad_norm_ to prevent the gradient exploding
problems. Here we can see a similar phenomenon as in the previous experiment, that validation
loss increase when we increase the number of neurons in the layer when a number of layers are 3
for network 1 and 5 for network 2, but it declines for network 1 with 5 layers and network 2 with
7 layers. The reason for this could be that we were able to overfit the data for smaller networks,
while deeper networks still need more training.

Full-scale training

For the final comparison, we trained on the full training(14300) dataset, the smallest Network1
with 3 hidden layers and 20 neurons per layer and the biggest Network 2 with 7 hidden layers
and 200 nodes per layer. We preserved a 0.8-0.2 training validation split and run 10 epochs with
Adam optimizer with weight decay and BCEWithLogitsLoss function. We run training on GPU
for 4 hours for each experiment and saved weights of the model with the smallest validation loss.

10

From the results in Figure 15, we can see that this training was not enough to tune Network 2 and
accuracy was lower.

Figure 15: Results of running full-scale experiments for

Network2(9_200)(top)-first and Network1(3_20) - second

NEXT STEPS
In the fullness of time our model could be improved by adding data augmentation and using an
ensemble of models for prediction. Adding new examples of patient notes would benefit the

11

networks by providing new examples of medical abbreviations and jargon that could be used in
the test set. On the other hand, using an ensemble of models would benefit us by providing
multiple predictions and we would be able to specialize each of the networks to predict a subset
of features. We would imagine that this will increase the accuracy by at least a few percent.

CONCLUSION
In this project we get familiar with natural language processing and the problem of feature
selection in the text. This problem consists of 2 high-level tasks. Tokenize the text and predict if
each token corresponds to the given feature.

In our first model, we wrote a simple tokenizer that parses text into tokens based on finding
regular expressions like punctuation symbols, newline, and connection words like ‘and’. This
tokenizer wasn’t able to distinguish consecutive words that describe different features which
made it not usable for this problem. As a feature predictor, we used the K-nearest neighbor
algorithm.

First, we saved the most unique annotation from the training set based on the similarity function
for each feature. Then we compared each token with each unique annotation and if the similarity
between the two was higher than 0.9 we would predict that the token is associated with the
feature. Unfortunately, we found that the similarity function that we used from the spacy library
sometimes gives a high value for uncorrelated sentences, while for similar sentences it gives
small values.

Our second model was based on Bert and we tried to improve it by specializing it in medical
vocabulary with masking and fine-tuning it with the extraneural network on top. Rather than
tuning Bert for medical vocabulary ourselves, we used the leading pretrained model from the
Kaggle competition. We extended the base model with 2 network architectures and compared
their performance. The first network contains 3, 5, or 7 fully connected layers with 20, 100, or
200 neutrons. From experiments, we saw that a network with 3 layers doesn’t benefit from
adding extra neurons, while a network with 7 layers can’t be trained well with just 1000
examples. Network2 consists of 7 or 9 hidden layers with shortcut connections. After running
full-scale training for both networks we got that the accuracy of the smaller model was better.
The accuracy of our best model is 0.848.

12

EXPERIMENTS

https://docs.google.com/spreadsheets/d/118YOmmX7FIVNIGXdiGmKu5mbhVVrAgjh3PyX

Y1rlc0g/edit?usp=sharing

Experiment with Network 1

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

3 20

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200 3.34777709912

13

https://docs.google.com/spreadsheets/d/118YOmmX7FIVNIGXdiGmKu5mbhVVrAgjh3PyXY1rlc0g/edit?usp=sharing
https://docs.google.com/spreadsheets/d/118YOmmX7FIVNIGXdiGmKu5mbhVVrAgjh3PyXY1rlc0g/edit?usp=sharing

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

3 100

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200 3.36345709441

14

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

3 200

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200 3.37860203962

15

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

5 20

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200 3.45816279502

16

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

5 100

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200 3.44462877224

17

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

5 200

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200 3.44563263090

18

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

7 20

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200 3.47401548225

19

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

7 100

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200

It wouldn’t make sense to increase the number of hidden layers

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

7 200

Linear,
LeakyRelu,

Dropout(0.2) 10 800 200

It wouldn’t make sense to increase the number of hidden layers

20

Experiment with Network 2

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

5 20

AVG2(Linear,
LeakyRelu,

Dropout(0.2))
+ Linear 10 800 200 1.47786917250

21

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

5 100

AVG2(Linear,
LeakyRelu,

Dropout(0.2))
+ Linear 10 800 200 1.54799610854

22

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

5 200

AVG2(Linear,
LeakyRelu,

Dropout(0.2))
+ Linear 10 800 200 1.79906619018

23

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

7 20

AVG2(Linear,
LeakyRelu,

Dropout(0.2))
+ Linear 10 800 200 3.38034975527

24

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

7 100

AVG2(Linear,
LeakyRelu,

Dropout(0.2))
+ Linear 10 800 200 3.27411811745

25

Layers
Neurons per

layer
Kind of
Layers # epochs

Train examples
num

Val examples
num

Best validation
loss

7 200

AVG2(Linear,
LeakyRelu,

Dropout(0.2)) 10 800 200 3.01321725651

26

+ Linear

Full-scale Experiments with Network 1 and Network 2

Layers
Neurons per

layer
Kind of
Layers

#
epochs Runtime

Train
examples

num

Val
examples

num
Best

validation loss

3 5
Linear,

Dropout(0.2) 3 72m 50s 11440 2860
0.138415390

74

27

Layers
Neurons
per layer

Kind of
Layers # epochs Runtime

Train
examples

num

Val
examples

num
Best

validation loss

7 200

AVG2(Linear,
LeakyRelu,

Dropout(0.2))
+ Linear 10 240m 38s 11440 2860 2.928469074

28

