

DOCTORAL DISERTATION

Optimizing Compiler Heuristics with

Machine Learning

Dejan Grubišić

April, 2024

ABSTRACT

Optimizing Compiler Heuristics with Machine Learning

by

Dejan Grubisic

Compiler technology is crucial for enhancing the performance and efficiency of

modern software. The complexity of novel computer architectures, the ever-evolving

software landscape, and the ever-growing scale of computation have made manual

optimization techniques increasingly difficult and time-consuming. To address this,

machine learning (ML) can recognize intricate patterns and automatically tailor code

generation and optimization strategies for specific hardware configurations, signifi-

cantly enhancing program performance. This thesis demonstrates these ideas.

First, we showcase the use of reinforcement learning in optimizing tensor compu-

tations with LoopTune. LoopTune optimizes tensor traversal order while using the

ultra-fast lightweight code generator LoopNest to perform hardware-specific optimiza-

tions. With a novel graph-based representation and action space, LoopTune speeds

up LoopNest by 3.2x, generating an order of magnitude faster code than TVM, 2.8x

faster than MetaSchedule, and 1.08x faster than AutoTVM, consistently performing

at the level of the hand-tuned library Numpy.

Second, we pioneer the use of large language models (LLMs) in compiler optimiza-

tion. Our model generates optimization in seconds, achieving a 3.0% improvement

in reducing instruction counts over the compiler, outperforming two state-of-the-art

baselines that require thousands of compilations. Even more, the model shows sur-

prisingly strong code reasoning abilities, generating compilable code 91% of the time

and perfectly emulating the output of the compiler 70% of the time.

Third, we evaluate feedback-directed LLMs that use compiler feedback collected in

inference time to improve generated code. We evaluate three feedback formats with

various degrees of information, which all outperform the original model by 0.11%,

0.4%, and 0.53%. We further combine this approach with temperature-based sampling

and iterative compilation. Sampling techniques show superior performance, reaching

98% of autotuner’s performance over the compiler given the budget of 100 samples.

Fourth, we present Priority Sampling, a simple deterministic LLM sampling tech-

nique that produces unique samples ordered by the model’s confidence. Priority

Sampling outperforms Nucleus Sampling for any number of samples, reducing the

code size further than the original model and achieving a 5% reduction over -Oz in-

stead of 2.87%. Moreover, it outperforms the autotuner used for the generation of

labels for the training of the original model in just 30 samples.

Acknowledgments

I want to thank all the people who were consistently helping me during my PhD

journey, teaching me how to do research, collaborate, and grow as a person and

scientist. Without these amazing people, I couldn’t publish papers, present my work,

and finally write this thesis.

I want to thank my advisor Professor John Mellor-Crummey who mentored me

through the whole PhD and spent numerous hours discussing and debugging complex

problems in the development of profiling tools. John introduced me to the world

of research and showed me what an organized research group looks like, and how

to collaborate, listen, and focus common efforts toward reaching the common goal.

During 5 years working with John, I had the opportunity to learn the intricacies of

parallel and distributed computing, optimize various problems for diverse hardware

architectures, and get familiar with open questions and cutting-edge research in high-

performance computing. Besides technical work, John taught me how to present

my work and write scientific papers, and provided valuable feedback for writing this

thesis.

I would like to thank the following people from the group whom I had the pleasure

of working with:

• Laksono Adhianto, who helped me integrate GPU Idleness Analysis to HPCViewer.

• Jonathon Anderson, who developed a second-generation, highly multithreaded

HPCToolkit’s post-mortem data analysis and made it scalable for large-scale

applications.

• Aaron Cherian, who collaborated with me on the development of a GPU tracing

v

architecture.

• Vladimir Indjic, who was the main contributor with me on the Compiler2

project.

• Mark Krentel, who helped refactor the loading of the HPCToolkit measurement

subsystem.

• Yumeng Liu, who implemented HPCToolkit’s sparse metrics representation.

• Xiaozhu Meng, who has collaborated with me on adding support for profiling

AMD GPUs.

• Ryuichi Sai, who developed optimizations for high-order stencils on GPUs.

• Keren Zhou, who developed GPU Binary Analysis, GPU Advisor, and helped

me numerous times to understand GPU tracing infrastructure.

Besides my incredible group, I had the opportunity to do an internship at Berkeley

Lab and two internships at Meta AI, collaborating with the following amazing people:

• Brian Austin (Berkeley Lab), who mentored me in developing support for GPU

power analysis in HPCToolkit.

• Aleksandar Zlateski and Bram Wasti (Meta AI), who mentored me for the

LoopTune project and implemented LoopTool and LoopNest.

• Chris Cummins, Volker Seeker, and Hugh Leather (Meta AI), who were mentor-

ing and collaborating with me on the ”Large Language Models in Compilers”

project.

In addition to research and engineering collaboration, I would like to thank my

family and friends, without whom, I wouldn’t have been able to go through the PhD

study. To my parents, Predrag and Snežana, for being a constant source of love and

vi

support, brother Dušan who was always there for me, my grandma Venetka, and

foremost my wife Emily.

Last, I would like to thank Professor Ray Simar and Christopher Jermaine for

being members of the Thesis Committee together with my advisor John Mellor-

Crummey. Without their great support and guidance, I wouldn’t be able to write my

thesis successfully and finish my PhD.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations xi

List of Tables xx

1 Introduction 1

1.1 Optimizing Compiler Heuristics . 1

1.2 Thesis Statement . 4

1.3 Contributions . 4

1.4 Thesis Structure . 6

2 Background 7

2.1 A Brief History of Computer Hardware, Programming Languages,

and Compilers . 7

2.2 Modern Compiler Design . 14

2.3 Autotuning in Compilers . 16

2.4 Machine Learning for Code Optimization 18

3 Optimizing Tensor Programs with Reinforcement Learn-

ing 31

3.1 Introduction . 31

3.2 Tensor Contractions . 33

3.2.1 Optimizing Generalized Tensor Contractions 36

3.3 LoopStack . 37

viii

3.4 LoopNest – Backend Optimizer . 38

3.4.1 ML-centric Design . 39

3.4.2 LoopNest Optimizations . 41

3.4.3 Evaluation . 44

3.5 LoopTool API . 45

3.5.1 Declarative API . 46

3.5.2 Intermediate Representation (IR) 47

3.5.3 Lowering to loops . 50

3.6 LoopTune - Frontend Tuner . 55

3.6.1 Learning to Optimize Tensor Computations 55

3.6.2 Defining an Action Space . 57

3.6.3 Defining a Reward . 59

3.6.4 Defining the State Representation 59

3.6.5 RLlib - Library for Reinforcement Learning 62

3.7 Search to Optimize Tensor Programs 63

3.8 Experiments . 65

3.8.1 RLlib Training Analysis . 66

3.8.2 Comparison to Search Based Approaches 68

3.8.3 Analysis of the loop schedule optimization space 70

3.8.4 Comparison to Numpy, TVM, MetaSchedule, and AutoTVM . 72

3.9 Related Work . 73

3.10 Discussion . 76

3.10.1 Constant Loop Bounds . 77

3.10.2 Computation Size . 77

3.10.3 New Hardware Support . 78

4 Large Language Models for Compiler Optimization 79

4.1 Introduction . 79

ix

4.2 LLVM Pass Ordering with Large Language Models 81

4.2.1 Prompt Structure . 82

4.2.2 LLVM-IR Normalization . 84

4.3 Training Methodology . 85

4.3.1 Model Architecture . 85

4.3.2 Training Data . 86

4.3.3 Training Configuration . 87

4.3.4 Training Results . 88

4.4 Experiments . 90

4.4.1 Comparison to State-of-the-Art 90

4.4.2 Evaluation of Generated Pass Lists 93

4.4.3 Evaluation of Generated Code 95

4.5 Additional Experiments . 101

4.5.1 Ablation of Dataset Size . 102

4.5.2 Ablation of Code Optimization Task 103

4.5.3 Evaluation of Single Pass Translation 104

4.6 Related Work . 106

4.7 Discussion . 110

4.7.1 Context Window . 110

4.7.2 Math Reasoning and Logic . 111

4.7.3 Inference Speed . 111

5 Feedback-directed Large Language Models for Compiler

Optimization 112

5.1 Introduction . 112

5.2 Motivation and Background . 113

5.3 Feedback-directed LLMs . 115

5.4 Training Methodology . 118

x

5.4.1 Datasets . 119

5.4.2 Training . 119

5.5 Experiments . 120

5.5.1 How does the feedback model compare to the original in Task

Optimize and Task Feedback? 120

5.5.2 How does the feedback model achieve when sampling is enabled?123

5.5.3 Can we use the feedback model to generate feedback and

repair the current solution iteratively? 127

5.6 Related Work . 129

5.7 Discussion . 130

6 Sampling of Large Language Models for Compiler Opti-

mization 132

6.1 Introduction . 132

6.2 Priority Sampling of Large Language Models 134

6.3 Experiments . 138

6.4 Additional Experiments . 140

6.5 Related Work . 142

6.6 Discussion . 147

6.6.1 Sequential Implementation . 148

7 Conclusions and Future Work 149

Bibliography 155

Illustrations

2.1 Compiler modules. Frontends parse the input program to an IR, the

Optimizer optimizes the IR with optimization passes, and Backends

translate the IR to a hardware binary. 15

2.2 Iterative Compilation. The compiler iteratively evaluates various

sequences of optimization passes or heuristic values for a given time

allocation. [1] . 17

2.3 Ilustration of training and inference of machine learning [2]. In (a),

training observations have been collected, consisting of features and

their corresponding classes we are trying to predict. A model is then

fitted to these observations, shown as the green curve in (b). The

model can then be used to infer the label of unseen feature values,

shown in (c). 19

2.4 Feed-forward neural network with two hidden layers. Each node

contains a non-linear activation function. Each edge contains weight

multiplied and summarized with values from previous nodes [3]. . . . 23

xii

3.1 Example of tensor contraction between tensors A and B. This

computation consists of 1) element-wise operation between yellow

boxes in tensors A and B and 2) reduction operation of the result of

the previous operation to a single resulting box. The resulting tensor

has a dimension of A and B without reduction dimension {4, 3, �2, 4,

�2} = {4, 3, 4}. For simple matrix multiplication, element-wise

operation is multiplication, and reduction operation is addition. . . . 34

3.2 Matrix multiplication . 37

3.3 LoopStack architecture [4]. 38

3.4 LoopTool’s Python embedded declarative DSL [5]. 47

3.5 Matrix multiplication in LoopTool (left). A point-wise application of

the function f across all three dimensions of %a (right) [5]. 48

3.6 Tuning loop schedule with LoopTool. Try it on

https://loop-tool.glitch.me. 54

3.7 LoopTune training loop. LoopTune transforms the generated

benchmark to an intermediate representation (IR) and uses LoopTool

API to apply actions and get observations, while LoopNest compiles

and executes the loop nest, providing the reward [4]. 56

3.8 Optimizing ranges and order of loops for matrix multiplication using

LoopTune’s action space [4]. 58

3.9 Text representation shows the algorithm. Schematic representation

shows the memory layout. Graph representation explains nesting

order (black), access pattern (red), and data flow (blue). Vector

representation aggregates graph representation for the training [4]. . . 60

3.10 Histogram of strides frequency [4]. 61

3.6 Traditional search approach in finding the optimal sequence. Actions

(edges) are sorted by the performance of the next state [4]. 64

xiii

3.7 Average reward per epoch for RLlib algorithms during training of

4000 steps [4]. 67

3.8 Achieved performance (higher is better) and search time (lower is

better) of randomly selected 25 test benchmarks given 60 seconds for

search. The ”Original” refers to LoopNest, which was used as a back

compiler for greedy, beam, random searches, and the LoopTune

method [4]. 68

3.9 Speedup distribution for searches from Figure 3.8 normalized with

LoopNest results [4]. 69

3.10 Performance and time needed for expanding a search graph in each

step [4]. 70

3.11 Compile time and Execution ratio of test benchmarks. For Figure b),

test cases were normalized with the best method sorted from best to

worst on the y-axis [4]. 72

4.1 Overview of our approach, showing the model input (Prompt) and

output (Answer) during training. The prompt contains unoptimized

code. The answer includes an optimization pass list, instruction

counts, and the optimized code [6]. 83

4.2 Overview of our approach, showing the model input (Prompt) and

output (Answer) during inference. The prompt contains unoptimized

code. The answer comprises only an optimization pass list, which we

feed into the compiler, ensuring the optimized code is correct [6]. . . 84

4.3 Training and test data. Each LLVM-IR function is autotuned to

create a (Prompt, Answer) pair. The n tokens column shows the

number of tokens when the prompt is encoded using the Llama 2

tokenizer. -Oz instruction count is instruction count after applying

-Oz flag [6]. 87

xiv

4.4 Performance on holdout validation set during training. We evaluate

performance every 250 training steps (131M train tokens). Parity

with -Oz is reached at 393M tokens and peak performance at 10.9B

tokens [6]. 89

4.5 Performance of different approaches for pass ordering on a test set of

unseen LLVM-IR functions from Figure 4.3. All metrics are w.r.t.

-Oz. Instructions saved is summed over functions improved and

instructions regressed is summed over functions regressed. Overall

improvement is the sum total instruction count savings w.r.t -Oz.

The autotuner performs best but requires 2.5B additional

compilations (949 CPU days). Our approach achieves 60% of the

gains of the autotuner without invoking the compiler once [6]. 92

4.6 Extending the models in Figure 4.5 with “-Oz backup”. If a model

predicts a pass list other than -Oz, it also evaluates -Oz and selects

the best. This prevents regressions w.r.t -Oz at the expense of

additional compilations [6]. 93

4.7 Frequency of individual passes and the length of generated pass list

for each of the 100,000 test programs. -Oz is the starting point for

the autotuner and is the dominant result, being the best-found result

for 93.2% of autotuned test programs and appearing in an additional

0.6% of pass lists as part of a longer sequence. The model-generated

pass distribution tracks the autotuner but slightly overpredicts -Oz

(94.3%) and includes nine passes that the autotuner used on the

training set but not the test set. Results are ordered by decreasing

autotuner frequency [6]. 94

4.8 The improvement over -Oz by dataset [6]. 95

4.9 The improvement over -Oz compared to the input size. Larger codes

optimize more [6]. 96

xv

4.10 Distribution of data given maximum program size in LLaMa2 token

count. Our training dataset consists of programs smaller than 1024

tokens — only 15% of available data. 96

4.11 Compiler errors of model-optimized code on 100,000 unseen inputs [6]. 97

4.12 Compiler errors in model-optimized code [6]. 98

4.13 An example where the model generates compilable code but fails to

compute the correct answer for a numeric expression. Producing the

correct result for this expression requires non-trivial mathematical

reasoning [6]. 99

4.14 An example where the model generates correctly optimized code but

fails to produce the pass list needed to produce the desired code [6]. 99

4.15 An example of an unsafe optimization by the model. The

33-instruction input program (not shown) contains a loop that is not

always safe to optimize away. For example, when y = INT MAX the

loop never terminates [6]. 100

4.16 Model-optimized code quality as a function of the performance of the

generated pass list. Code quality is lower when the pass list performs

worse than -Oz. The model-optimized code resembles the ground

truth less (lower BLEU score), the code is less likely to compile, and

the model struggles to estimate the instruction count (higher error).

Error bars show 95% confidence intervals [6]. 101

4.17 Ablating the impact of training data size and the auxiliary

co-training task of generating optimized code (denoted No Aux).

Data size is measured as a number of training examples. The graph

shows performance on a holdout validation set during training [6]. . 102

xvi

4.18 Ablation experiments. We evaluate the impact of varying training

data size while training the model to optimized code size. We train

each model for 30k steps and report the performance of the best

model checkpoint on a holdout validation set of 1,000 unseen IR

functions [6]. 103

4.19 Training a model to predict single optimization passes. The right

subplot evaluates the quality of the generated code for the

corresponding pass (ordered by BLEU score). The left subplot shows

the frequency that the corresponding pass contributed to an

improvement or regression of instruction count over -Oz [6]. 105

4.20 Example failures from the pass translation experiment. We combine

the model input (red), ground-truth (blue), and model-generated

(green) texts into a single unified diff for brevity. Black text is

common to all three [6]. 107

4.21 The example of correct generation of optimized IR. The model

performed several complex optimizations, including control-flow

simplification and replacing if-then-else code blocks with

instructions [6]. 108

5.1 Correlation heatmap of metrics available at inference time. Input and

output prompts are described with prefixes (src, tgt). Instruction

counts are abbreviated with inst count. (G) stands for generated,

while (C) stands for compiled. 114

5.2 Distribution of absolute error in predicting optimized IR instruction

count and BLEU score with respect to performance compared to

autotuner [7]. 114

xvii

5.3 Feedback-directed model. First, we ask LLM to optimize the

instruction count of the given IR. LLM generates the best

optimization passes, instruction counts for starting and generated IR

and generated IR itself. Next, we compile the generated pass list and

create feedback by checking if the generated pass list is valid,

evaluating instruction counts, examining if the generated IR contains

compilation errors, and calculating the BLEU score between the

generated IR and the compiled IR. If some feedback parameters are

problematic, we extend the original prompt with the generation,

compiled code, and feedback and ask it to try again [7]. 116

5.4 Prompt structure of Feedback models. Short Feedback is the smallest

in size and extends the prompt with just calculated metrics and error

messages. Long Feedback contains the most information including

compiled IR. Fast Feedback is the fastest to generate since it doesn’t

need the generation of IR to be calculated [7]. 117

5.5 Comparison of the original and feedback models in reducing

instruction count. The upper figure shows the performance on Task

Optimize. The lower figure shows the performance on Task Feedback,

where each model uses their format for feedback. Horizontally, we

show the performance on all examples: examples where the

autotuner’s best pass is non-Oz, the original model was worse than

the autotuner, and the original model mispredicted target instruction

count. All the models keep the ability to perform Task Optimize

while improving the performance when feedback is provided [7]. . . . 122

5.6 Sampling diagrams of the original model for 50k unseen randomly

selected test examples [7]. 124

5.7 Sampling diagrams of the feedback models. T=X means that

temperature could be any value [7]. 126

xviii

5.8 Comparison of the iterative approach (model) versus the sampling of

the original model with the same amount of computation. In each

step, the Fast Feedback model generates feedback for the next step,

applying Task Optimize in the first step and Task Feedback

afterward. Once the model outputs ”I am sure!” we stop. We allow

the same number of generations for the original model [7]. 128

6.1 Average number of unique samples generated from 50K unseen test

programs. Priority sampling produces a higher ratio of unique

samples than nucleus sampling [8] . 133

6.2 Priority Sampling tree expansion. Each node contains a token

generated by inference and the probabilities of the next potential

tokens. In the first sample, we create a branch from the root to the

end-of-sequence (EOS) token and put all valid potential tokens with

their probabilities in the priority queue. For every next step, branch

the token with the highest probability and generate that branch until

the EOS [8]. 135

6.3 Average improvement in code size over -Oz optimization on 50k

unseen test examples. Autotuner spends 760s optimizing each

example and sets the labels for LLM fine-tuning [6]. Greedy

Decoding, Nucleus Sampling, and Priority Sampling use the

fine-tuned model. Random Sampling selects 100 random flags for

each sample. Priority Sampling outperforms all previous methods,

including autotuner, which was used for labeling [8]. 139

6.4 Figure from [9]. The probability assigned to tokens generated by

Beam Search and humans, given the same context. Note the

increased variance that characterizes human text, in contrast with the

endless repetition of text generated by Beam Search. 144

xix

6.5 Figure from [10]. Each sample takes a number from the range (0,1)

and iteratively finds the next tokens whose probability captures that

interval. 146

6.6 Figure from [11]. Left: trie after the partial generation of a sample [1,

0], immediately before making the third random choice. Right:

updated trie after P terminates for the full trace [1, 0, 1]. 147

Tables

3.1 Compile times, in milliseconds, for LLVM and LoopNest. LoopNest

performs the compilation orders of magnitude faster [5]. 45

3.2 The average execution performance of top 5 schedules, in GFLOPS,

for code generated by LLVM and LoopNest. LoopNest achieves

comparable (within measurement error) or superior performances

while taking a fraction of the time to generate the code [5]. 46

6.1 Experimental results and ablation experiments of Priority Sampling.

Evaluation includes the improvement of Random Sampling, Nucleus

Sampling, and Autotuner over the compiler (default -Oz

optimization). Ablation evaluates the use of the regular expression,

constraining branching factor, and using the geometric mean as the

priority metric in Priority Sampling [8]. 141

1

Chapter 1

Introduction

1.1 Optimizing Compiler Heuristics

Computer systems play an integral role in the contemporary world. They enable

communication over the internet, transportation using a global positioning system

(GPS), control manufacturing processes, monitoring medical conditions, and many

more. At the heart of these systems lie compilers, essential tools that translate

high-level programming languages into machine code understandable by computers.

Compilers are crucial in optimizing code for efficiency and performance, ensuring that

software runs smoothly and effectively on diverse hardware platforms. Their ability

to bridge the gap between human-readable code and machine-executable instructions

is fundamental to the functionality and success of modern computing environments.

Designing and optimizing compilers is a complex problem. Compilers need to know

how to parse high-level programming languages, optimize their representations while

maintaining the semantics, and interact with the low-level intricacies of underlying

hardware. Modern compilers, such as LLVM [12], implement thousands of rules and

algorithms in over 1M lines of C++ code to achieve this. Managing and maintaining

such a code base requires significant effort. Additionally, the pace of developing

new hardware increased the need for flexible compiler designs that could be easily

optimized for any new architecture.

Traditional compiler design methodology [13] doesn’t provide a satisfactory solu-

2

tion. According to this methodology, compiler engineers design optimization passes

that transform the compiler’s intermediate representation (IR) into more efficient

implementation. These optimizations include eliminating redundant computation,

increasing memory access to nearby elements, or reordering instructions to utilize

hardware resources effectively. Some optimizations, such as loop-unroll and inline,

include configuration parameters that must be tuned for different applications to

obtain optimal performance.

Optimizing many of these problems is NP-complete, which means finding the

optimal solution in polynomial time is impossible. This is why compiler engineers

design hand-crafted heuristics that provide performant implementations most of the

time. Writing compiler heuristics requires expertise in hardware design and iterative

empirical evaluation. Once a set of heuristics works well for most applications, they

are hard-coded into the compiler code base and shipped to production.

The problem with this approach is that heuristics don’t optimize efficiently all

programs. For example, programs that contain a lot of calls for small functions could

benefit from more aggressive inlining, while programs that contain loops could benefit

from unrolling and vectorizing on a specific type of hardware. Additionally, the order-

ing of optimization passes is heuristic, resulting in different programs’ performances.

Finally, many heuristics are hard-coded in the evergrowing compiler code base and

even become forgotten [14].

Instead of optimizing heuristics manually, compiler engineers found that itera-

tively compiling programs with various heuristic configurations could be about 2.3x

more effective [15]. Section 2.1 describes an extensive collection of prior work that

explores genetic algorithms, greedy search, and other design-space exploration tech-

niques for compiler optimization. The problem with these approaches is that they

3

require running a search from scratch for each new program. This introduces signif-

icant resource constraints and impedes applications that must be optimized in real

time.

Machine learning (ML) presents an attractive approach to overcoming the problem

of repeated search. Instead of searching for the heuristic parameters for each program,

the ML provides a mechanism to map the input program to the most performant

heuristic configuration given enough data. This practically replaces a time-consuming

search with the single feed-forward inference of the machine learning model. The

compute-intensive part is moved to the training phase, which must be executed only

once.

Machine learning, however, comes with a set of challenges. First, the input pro-

gram must be represented as a vector of constant size. This vector must capture the

program’s unique characteristics relevant to the predicting task. Next, most machine

learning models, such as neural networks, require a lot of training data and predictive

labels to achieve satisfactory prediction accuracy. Although a large amount of code

is available online on platforms such as Github, generating labels such as execution

time would require building projects automatically and creating appropriate input

data, which is extremely difficult. Finally, using ML to write compiler optimizations

requires that the produced code doesn’t change the semantics of the input program.

This is hard to achieve because machine learning models are inherently probabilistic.

This thesis aims to demonstrate the practical use of machine learning in compiler

optimization. It proposes novel ML architectures that outperform human experts

and current state-of-the-art methods, evaluates their capabilities, and discusses their

limitations.

4

1.2 Thesis Statement

Machine learning is a viable methodology for code optimization that could be used

to predict performant optimization strategies that don’t change program semantics.

To prove this thesis, we provide the evidence for the following three claims:

1. Reinforcement Learning can help optimize the execution time of tensor pro-

grams by predicting tensor traversal order (loop schedule) and using a backend com-

piler to execute it to the given hardware.

2. Large Language Models can efficiently optimize code size by predicting the

sequence of LLVM’s optimizations by directly using the input program’s text repre-

sentation of LLVM IR, for programs that fit in the model’s context size.

3. The performance of Large Language Models in predicting LLVM’s optimization

sequence can exceed the performance of optimization sequences used for training.

1.3 Contributions

This thesis includes the following contributions:

• It describes the design, implementation, and evaluation of LoopTune, a deep

reinforcement learning framework that optimizes tensor computations in deep

learning models for the CPU. LoopTune optimizes tensor traversal order while

using the ultra-fast lightweight code generator LoopNest to perform hardware-

specific optimizations. With a novel graph-based representation and action

space, LoopTune speeds up LoopNest by 3.2x, generating an order of magni-

tude faster code than TVM, 2.8x faster than MetaSchedule, and 1.08x faster

than AutoTVM, consistently performing at the level of the hand-tuned library

Numpy. Moreover, LoopTune tunes code in order of seconds.

5

• It is the first study to evaluate the use of large language models for predicting

LLVM optimization sequence. The model takes as input unoptimized assembly

and predicts a list of compiler options to optimize the code size of the pro-

gram. Crucially, during training, we ask the model to predict the instruction

counts before and after optimization and the optimized code itself. This ap-

proach achieves a 3.0% improvement in reducing instruction counts over the

compiler, outperforming two state-of-the-art baselines requiring thousands of

compilations. Furthermore, the model shows surprisingly strong code reasoning

abilities, generating compilable code 91% of the time and perfectly emulating

the output of the compiler 70% of the time.

• It proposes and evaluates feedback-directed LLMs that use the compiler to

evaluate the response by the LLM and provide feedback. LLM then uses the

feedback and tries again. We consider this method for three different feedback

formats and assess how this method works with sampling techniques. Our ap-

proach adds an extra 0.53% of the improvement over -Oz to the original model.

Nevertheless, it doesn’t significantly exceed the original model’s performance

when combined with the sampling.

• It introduces Priority Sampling, a simple deterministic sampling technique for

LLMs that produces unique samples ordered by the model’s confidence. Each

new sample expands the unexpanded token with the highest probability in the

augmented search tree. Priority Sampling outperforms Nucleus Sampling for

any number of samples, boosting the performance of the original model from

2.87% to 5% improvement over -Oz and outperforming the autotuner used for

the generation of labels for the training of the original model in just 30 samples.

6

1.4 Thesis Structure

Chapter 2 describes the context for this work. It discusses the history of compiler

development, explains the design of modern compilers, and describes previous work

and limitations in machine learning focused on optimizing compilers. Chapter 3

presents a LoopTool, a reinforcement learning based framework that optimizes loop

schedules. Chapter 4 presents the use of large language models for predicting LLVM

optimization sequence. Chapter 5 introduces the idea of a feedback-directed method

that evaluates the response of the LLM and provides the feedback. Chapter 6 presents

Priority Sampling, a novel LLM sampling method that guarantees unique samples

ordered by the model’s confidence. Chapter 7 summarizes our findings, provides

critical discussion, and outlines potential research directions.

7

Chapter 2

Background

This chapter serves two purposes. First, it provides a historical overview of com-

piler development, interaction with hardware and programming languages, and run-

time systems. It presents the design of the modern compiler toolchain LLVM [12] and

automatic optimization techniques that motivated machine learning based autotun-

ing. Second, it describes the development of machine learning techniques in compiler

design, which serve as the foundation for the research described in this dissertation.

2.1 A Brief History of Computer Hardware, Programming

Languages, and Compilers

The development of the first microprocessors marked a significant breakthrough in

computer architecture. In the early 1970s, companies such as Intel and AMD intro-

duced the first mass-produced chips, consolidating the functions of multiple discrete

components into a single integrated circuit. This innovation paved the way for creat-

ing more compact and powerful computers that are pervasive components of today’s

society.

Advancements in semiconductor technology, storage devices, and networking com-

ponents have collectively contributed to the exponential growth in computing power.

The constant pursuit of miniaturization increased processing speed and improved en-

8

ergy efficiency by roughly doubling the number of transistors every two years. This

pace of development, known as Moore’s Law, continued for more than 50 years, re-

ducing the size of transistors to about 5nm in 2020, reaching the limit of Silicon

technology [16].

Transistor scaling allowed for a higher density of transistors on a chip, leading to

more sophisticated and intricate logic circuits. Directly manipulating these circuits

became impractical and error-prone for human programmers [17]. This gave rise to

the need for a higher-level abstraction that could express computational tasks more

clearly and structured.

In response to this need, the first programming languages emerged. These lan-

guages provided a bridge between human understanding and machine execution. Lan-

guages such as Fortran [18] and COBOL [19] enabled programmers to express compu-

tational tasks in a syntax closer to natural language, making it easier to conceptualize

and write code. This abstraction facilitated the translation of human-designed algo-

rithms into machine-executable instructions.

The relationship between transistor scaling and programming languages was sym-

biotic. The increasing complexity of logic circuits made it imperative to have higher-

level programming languages to manage and control these intricate circuits efficiently.

At the same time, transistor scaling enabled increases in clock frequency that accel-

erated the program execution.

To bridge the gap between programming languages and complex hardware cir-

cuitry, compiler technology became necessary. The purpose of compilers was to trans-

late and optimize a high-level program to binary code that the machine can execute.

Compilers need to perform a series of complex tasks to do this job successfully. First,

they need to ensure that a program adheres to the rules of the programming lan-

9

guage’s grammar or provide feedback if this is not the case. Second, they need to

tailor high-level program abstractions to various hardware backends, utilizing diverse

hardware components while preserving the program’s original intent.

Compiler development was always closely connected to hardware innovations and

applications of interest. In the early days, compilers focused on basic code opti-

mization techniques such as peephole optimization, constant folding, and algebraic

simplifications [20, 21]. These techniques aimed to improve the generated machine

code by simplifying and optimizing the intermediate representation.

In the 1970s, computers could run numeric simulations, which are highly impor-

tant for a wide range of scientific disciplines [22–24]. Since the main component of

these applications was implemented with loops, compilers started to analyze and op-

timize loops for better performance. Some techniques developed during this period

include loop unrolling, loop fusion, and loop-invariant code motion [25–27]. For the

first time, vector instructions, popularized by Cray [28], enabled executing multiple

operations simultaneously.

The 1980s were marked by the rise of Object-Oriented Programming (OOP), which

profoundly impacted the development of compilers and influenced both language de-

sign and the compilation process. Languages such as Smalltalk [29], Simula [30], and

later, C++ [31] and Java [32], introduced features such as classes, objects, encapsu-

lation, inheritance, and polymorphism, which made the compiler design process more

challenging. Nevertheless, developing these compilers allowed programmers to write

more complex programs and reusable code, improving productivity and making it

easier to maintain large software systems.

To address the requirements of the OOP compiler, intermediate representations

were redesigned to capture the structure and behavior of classes and objects. Dynamic

10

binding and late binding became prevalent to optimize the loading of the classes.

Techniques such as vtable-based method dispatch [33] were introduced to manage

polymorphic behavior, while sophisticated type-checking passes were implemented to

ensure the correctness of object-oriented programs.

When it comes to compiler optimizations, the 1980s saw the proliferation of

IR-based manipulations including data-flow and control-flow analysis [34], common

subexpression elimination [35], inlining [36], and even software pipelining [37] which

exploits instruction-level parallelism within loops. Additionally, considerable effort

was focused on optimizing register allocation [38] and utilizing efficiently fast reg-

isters. Techniques such as graph coloring for register allocation were introduced to

minimize memory access.

The 1990s witnessed a shift towards interprocedural optimization, where compil-

ers analyzed and optimized code across function boundaries [39]. New algorithms

for global common subexpression elimination [40], function cloning [41], and cross-

function analysis were developed to improve the performance of entire programs.

Compilers began automatically transforming scalar code into vectorized code [42] to

leverage Single Instruction Multiple Data (SIMD) instructions, enhancing parallelism

and performance.

The gap between processor speed and memory access times widened as proces-

sors became faster, leading to memory latency issues. To bridge this gap, increasing

cache sizes became a common strategy. Larger caches were introduced to store fre-

quently accessed data and instructions, reducing the need to fetch data from slower

main memory. Techniques such as cache blocking [43], loop transformations [44],

and prefetching enhanced spatial and temporal locality, minimizing cache misses and

improving overall cache efficiency.

11

The 1990s also saw fruitful developments in programming languages. Java [32]

was developed by Sun Microsystems, C++ [31] and Objective-C [45] were officially

standardized, interpreted languages such as Python [46] and R [47] emerged, while lan-

guages such as Haskell [48] gained attention for their expressive power and functional

paradigm features. Java Virtual Machine (JVM) [49] enabled Java to be platform in-

dependent, while just-in-time(JIT) [50] compilation enabled collecting the program’s

behavior during execution and dynamically optimizing the code accordingly.

The 2000s witnessed an explosion in web development, with the Internet becoming

a ubiquitous application platform. This shift increased the demand for programming

languages and frameworks that efficiently build dynamic and interactive web ap-

plications. JavaScript [51] emerged as the dominant language for client-side using

Representational State Transfer (REST) [52] API while scripting languages gained

prominence for building dynamic web applications. PHP [53], Python (Django) [54],

Ruby (Ruby on Rails) [55], Java, C# [56], and DotNet [57] became popular choices

for server-side development.

The internet-driven demands for faster development cycles and deployment led to

the rise of DevOps practices. Automation and continuous integration tools became

integral to the development process, influencing the choice of programming languages

and workflows. On the other hand, handling user requests and the emergence of

cloud computing brought scalability challenges for web applications. Programming

languages and frameworks that supported horizontal scaling and distributed archi-

tectures became crucial. Languages such as Erlang [58] and Go [59] gained attention

for their concurrency and parallelism features.

The LLVM (Low-Level Virtual Machine) [12] project proposed a modern, flexible

compiler infrastructure to consolidate compiler design. LLVM’s design allowed for

12

efficient code generation, optimization, and support for multiple programming lan-

guages and became the foundation for various compilers, including Clang [60] for C

and C++.

Optimizing for larger cache sizes continued with the development of multi-core

processors. With multiple cores sharing caches, optimizing for cache coherence [61]

and minimizing contention [62, 63] became crucial. Additionally, compilers started

using runtime profiles to guide optimizations [64, 65], tailoring the generated code

based on actual program behavior. This allowed compilers to make more informed

decisions about hot paths and frequently executed code.

As the pace of transistor scaling slowed down, increasing processor frequency be-

came infeasible. At the same time, the demand for computational power increased

exponentially. This challenge prompted numerous researchers to experiment with

Graphics Processing Units (GPUs) for general-purpose computing tasks, extending

beyond their traditional graphics-focused applications. In 2007, NVIDIA introduced

CUDA (Compute Unified Device Architecture) [66], along with comprehensive pro-

gramming models tailored for parallel processing. AMD announced its Stream Com-

puting initiatives [67]. This opened up new horizons, empowering developers to lever-

age GPUs’ immense parallel processing capabilities for diverse tasks, ranging from

scientific simulations and data processing to the forefronts of artificial intelligence

(AI).

With increased parallel processing capabilities on GPUs and the availability of

enormous datasets on the Internet, neural networks have become incredibly popular

since they can successfully learn intricate patterns from raw data. The crucial moment

for further development of machine learning happened in 2012. when Alex Krizhevsky

et al. proposed a deep convolutional network (CNN) [68] that could sort 1.2 million

13

high-resolution images into 1,000 different classes. Another breakthrough happened

in 2017 when Vaswani et al. proposed a novel transformer architecture [69] that could

generate and classify arbitrary text without any human-written heuristic.

These developments in machine learning reinforced the need for scalable software

infrastructure for the training, which led to the development of PyTorch [70] and

Tensorflow [71], as well as languages for high-performance scientific computing such as

Julia [72]. These frameworks enabled significant improvement in the standardization

and reproducibility of machine learning research, leading to numerous new inventions.

To improve the performance of deep learning models, PyTorch and Tensorflow

implement numerous domain-specific optimizations. Both employ kernel fusion [73] to

optimize the execution of operations on GPUs and utilize Tensor Cores when available.

They automatically tailor kernel parameters to given hardware, leveraging parallelism

and asynchronous execution while optimizing memory layout to enhance memory

access patterns and reduce latency. They optimize the computation graph [74] and

reduce the overall computational workload to eliminate redundant operations.

With the emergence of large language models [75], additional effort was invested in

scaling up infrastructure and enabling fast execution across many nodes. Since models

larger than 8B parameters are too big to fit on a single GPU, such as Nvidia’s A100,

it is necessary to implement fast communication protocols and efficient algorithms

for multi-node execution. Projects such as PyTorch Distributed [76], Tensorflow [71],

Ray [77], Horovod [78], DeepSpeed [79], Jax [80] were on forefront of these inovations.

Besides ML applications, significant effort is invested in building the systems for

processing large amounts of data, known as Big Data Architectures. Scaling up

Big Data Architectures involves distributing and managing computational workloads

across clusters of machines or containers. Frameworks that support scalability in big

14

data environments often work seamlessly with container orchestration platforms such

as Docker [81] and Kubernetes [82] and distributed data processing frameworks such

as Apache Spark [83], Hadoop [84], Kafka [85], Dask [86] and many more.

In contrast to large-scale systems optimizations, the innovations in consumer elec-

tronics, robotics, and automotive increased the need for real-time processing with

limited power supply. Virtual Reality (VR) [87] and Augmented Reality (AR) [88]

headsets are capable of rendering 3D scenes and interacting with the user in real-time.

Similarly, the development of self-driving cars [89] highly depends on fast rendering

of the car’s environment and using inference on neural networks to decide where the

car should go. These systems require challenging real-time processing while being

optimized for power consumption, which will undoubtedly lead to new hardware and

compiler innovations.

Each decade brought new challenges and opportunities, driving the development

of compiler optimization techniques to keep pace with advancements in hardware

architecture and programming practices. These optimizations collectively contribute

to improving code execution efficiency across a diverse range of applications. In

the following chapters, we will examine the structure of modern compilers and how

machine learning can help compiler design to keep up with these challenges.

2.2 Modern Compiler Design

As described in the previous section, compilers must deal with a complex interplay

between programming languages and underlying hardware infrastructure. Modern

compilers are separated into three modules - Frontend, Optimizer, and Backend (Fig-

ure 2.1) to make this task manageable. Such a modular approach enables fast inte-

gration of new programming languages and hardware architectures by simply writing

15

Figure 2.1 : Compiler modules. Frontends parse the input program to an IR, the

Optimizer optimizes the IR with optimization passes, and Backends translate the IR

to a hardware binary.

custom Frontends and Backends while reusing the core component – Optimizer.

Frontends compile and analyze input programs into a platform-independent in-

termediate representation (IR). Compilation begins with a lexical analysis or scanning

phase, breaking the source code into tokens. Next, the parsing phase analyzes the

syntax and structure of the code, producing an Abstract Syntax Tree (AST) that cap-

tures relationships between program elements. The AST is the basis for generating

IR, a platform-independent and structured code form.

An Optimizer takes the IR generated by a Frontend and applies a series of

transformations to enhance the efficiency of the code. These transformations include

loop optimization, inlining of functions, and data flow analysis. The goal is to produce

optimized code that executes faster, uses memory more efficiently, and minimizes

redundant computations. Optimizations are crucial for maximizing the performance

of the compiled program.

Backends apply hardware-dependent heuristics and translate IR to executable

16

code. The compiler then proceeds to the code generation phase, where the optimized

IR is translated into assembly code specific to the target architecture. Finally, the

assembly code undergoes further hardware-specific optimizations. It is translated into

machine code through the assembly and linking processes, resulting in an executable

binary that embodies the functionality of the original high-level source code.

To manage the complexity of optimizations, compilers typically partition opti-

mizations into independent optimization passes or flags, and the combination of these

passes contributes to the generation of optimized code. Each optimization pass fo-

cuses on a specific aspect of code improvement. While many optimization passes

are standalone and operate without requiring additional parameters, some, like loop-

unroll or vectorize, are parametric and require the specification of an integer value.

Using parametric optimization passes enhances the adaptability of compilers, enabling

developers to strike a balance between the desire for performance gains and potential

trade-offs in code size or compile time.

The size of the optimization space is vast. Production compilers such as GCC [90]

have more than 200 compiler flags on which we apply optimization selection problems.

This makes the optimization space 2200 if we assume that all flags are standalone. The

optimization space is even larger in reality. Similarly, LLVM [12] defines more than

150 optimization passes applied to Phase-ordering problems for optimization space

of size 150L, where L is the sequence length. These numbers are infeasible for simple

enumeration, and navigating such optimization spaces requires careful exploration.

2.3 Autotuning in Compilers

Experimenting with different optimization flags, either informally or systematically,

through exploration, compiler developers have found that simple search strategies

17

Figure 2.2 : Iterative Compilation. The compiler iteratively evaluates various se-

quences of optimization passes or heuristic values for a given time allocation. [1]

can outperform hand-written compiler heuristics (Figure 2.2). The core idea in-

volves defining a space of optimization strategies, such as unrolling and tiling and

iteratively evaluating various optimization parameters until we find the most effec-

tive one. The iterative compilation is platform-agnostic, evidence-based, and able to

achieve substantial performance gains on diverse sets of programs [15].

There is a large body of work on iterative compilation, with each investigation

focusing on a different heuristic or alternative search technique. Commonly used

methods include random and greedy searches [91, 92], design-space exploration tech-

niques [93–95] and genetic algorithms [15,96–101].

Various compiler heuristics were targeted with these approaches, including phase

ordering [96,99,102–104], multi-objective exploration [91], selecting loop transforma-

tions [105], optimizing for code size [97], and others.

Libraries such as ATLAS [106] and SPIRAL [107] optimize linear algebra and

signal processing algorithms by empirically considering factors such as cache sizes,

memory hierarchy, and instruction set architecture. Similarly, notable frameworks

18

such as PetaBricks [108] and LIFT [109] employ rule-based optimization systems that

allow users to define transformation rules for algorithmic patterns. This approach

enables users to define and optimize parallel patterns commonly found in numerical

algorithms, such as map, reduce, and stencil computations [110,111].

The inherent problem of iterative compilation is that it needs to be performed in-

dependently for each program. This introduces a significant computational overhead,

increasing compilation times and resource utilization, especially for large software

projects.

2.4 Machine Learning for Code Optimization

To understand the contribution of this thesis, it is necessary to understand what

is machine learning. This section explains the machine learning methodology and

elaborates on its application in optimizing compiler heuristics.

Machine learning (ML) is a scientific discipline that focuses on the development of

algorithms and models that enable computers to learn patterns and make predictions

or decisions without being explicitly programmed. To learn these patterns, we define

a model with parameters theta that we adjust during a training procedure to map a

feature vector to a given class we are trying to predict (Figure 2.3). Once training is

done, our model should be able to predict the label of unseen feature vectors, under

the assumption that it comes from a similar distribution like training data.

Feature Vector - Characterization of input program

In the context of compiler optimization, the feature vector is a set of observable

attributes that we use to describe the input program. To describe the program

successfully, the feature vector 1) must capture important properties in the input

19

Figure 2.3 : Ilustration of training and inference of machine learning [2]. In (a), train-

ing observations have been collected, consisting of features and their corresponding

classes we are trying to predict. A model is then fitted to these observations, shown

as the green curve in (b). The model can then be used to infer the label of unseen

feature values, shown in (c).

program and 2) must uniquely describe the input program. Poorly selected feature

vectors could impede the learning process and significantly reduce the precision of

the trained model. To characterize the input program, we define static and dynamic

features.

Static features of a program include the number of loops, arithmetic instructions,

code size, number of leaf nodes in its IR, or any other metric derived from the input

program, its IR, or assembly code. These features are usually cheap to collect since

they are always available at compile time. Cavazos et. al [112, 113] build compiler

performance models based on static features and optimize programs to reduce their

execution time. Agakov et. al [114] show that 36 commonly used code features can

be reduced with Principal Component Analysis(PCA) to just 5 features preserving

99% of the variance in data. AutoPhase [115] parses a 56-dimensional feature vector

20

for programs and uses reinforcement learning to predict the best optimization passes.

Besides features based on source code, graph-based features are particularly useful

since they can model definition-use relationships between variables [116, 117]. Park

et. al [118] constructed features by calculating shortest path graph kernels from

each basic block in IR to predict program performance. Projects such as Milepost

GCC [119] and LLVM’s Opt [12] enable feature extraction on source-code and IR

level, respectively.

Dynamic features include all the metrics that we can collect during execution

such as execution time, cache misses, and arithmetic intensity. These features are

valuable additions to static features since program behavior often depends on in-

puts that are unknown ahead of time. By multiplexing hardware counters Cavazos

et. al [120] were able to collect 60 dynamic features used for predicting performant

compiler heuristics. Tools such as PAPI [121], HPCToolkit [122], and GProf [123]

provide convenient interfaces for collecting dynamic features. Combining both static

and dynamic features outperforms each of them independently [124].

Model Architectures

Machine learning architecture is a mathematical model capable of finding a function

that maps feature vectors to output labels. Over time, many architectures were

proposed. Depending on whether they are used to predict a given class or generate

new data, they are divided into 1) Discriminative models and 2) Generative models.

Discriminative models include Logistic Regression [125], Support Vector Machines

[126], Decision Trees [127] and Random Forest [128], Feed-forward Neural Network [129],

Graph Neural Network [130], Convolutional Neural Network [68] and Transform-

ers [69]. When applied to the problem of code optimization, these models are primar-

21

ily used for predicting the performance of a given program, optimization sequence, or

on what device a given program should be executed.

Generative models include Bayesian Networks [131], Variational Autoencoders

(VAE) [132], Diffusion Models [133], and Generative Adversarial Networks [134] and

Transformers. These models are commonly used for the generation of new synthetic

training data. Note that transformers are in both categories since they could be

used for both generation and classification. In the rest of this section, we provide an

overview of each of these classes of model architectures.

Logistic regression is a simple binary classification task, aiming to predict the

probability of an instance belonging to a particular class. It uses the logistic function

to transform a linear combination of input features into a probability score, and a

decision threshold is applied to make the final classification. In the realm of optimizing

compilers, logistic regression was used to predict performant compiler optimizations

given the program’s dynamic features [120].

Support Vector Machines (SVM) aim to find an optimal hyperplane that

maximally separates different classes in the feature space. By using a technique called

the kernel trick [135] it can use linear methods to separate non-linear class problems

while being exceptionally stable. SVMs are used to optimize JIT compilation [136],

predicting unroll factors [137] and find the most performant optimization sequence

given performance counters data [138].

Decision Trees recursively split the input data based on features, forming a tree

structure of decision nodes that lead to final predictions. This approach provides

a clean and interpretable learning interface, able to handle non-linear relationships

between features and the target variable. On the negative side, small changes in the

data can result in a different tree structure, making them less stable and one decision

22

tree may not capture complex relationships as effectively as other models. Decision

trees are used to reduce the code size [139], learn to unroll the loops [140], and inline

heuristic [112].

Random Forests leverage the aggregation of multiple trees creating an ensem-

ble of decision trees to enhance predictive accuracy and mitigate overfitting. This

approach mitigates overfitting by averaging predictions across multiple trees, improv-

ing generalization, and increasing flexibility. However, this comes with the cost of

lower interpretability, and increased memory and compute requirements. Herrera et

al. [141] use Random Forest to optimize Big Data processing and analytics.

Feed-forward Neural Networks, also known as a multilayer perceptron (MLP),

are the first model to introduce the concept of hidden layers, enabling the network

to capture complex hierarchical features in data representations (Figure 2.4). Each

node takes a linear combination of previous nodes as an input, stored in weighted

connections, after which it uses a non-linear activation. The most commonly used

activation functions are Sigmoid, Hyperbolic Tangent, RELU, and leakyRELU [142].

The most widely used technique to train neural networks is Backpropagation [129].

Backpropagation involves the iterative adjustment of weights to minimize the differ-

ence between predicted and actual outputs. During each iteration, the algorithm

computes gradients of the loss function with respect to the network’s weights, repre-

senting the direction and magnitude of the steepest increase in the loss.

The learning rate determines the step size of weight updates, influencing the algo-

rithm’s convergence and stability. A higher learning rate may expedite convergence

but risks overshooting the optimal weights, while a lower learning rate may enhance

stability but slow down convergence. Backpropagation uses these gradients and learn-

ing rates to update weights, allowing the network to learn complex representations

23

Figure 2.4 : Feed-forward neural network with two hidden layers. Each node contains

a non-linear activation function. Each edge contains weight multiplied and summa-

rized with values from previous nodes [3].

and improve its predictive capabilities over successive iterations. Careful tuning of

these hyperparameters is crucial for achieving effective training and optimal neural

network performance.

Optimization algorithms play a pivotal role in minimizing the loss function dur-

ing the training process. Techniques such as Adam [143], RMSprop [144], and

Adadelta [145] enhance the convergence speed and stability of the learning process

by adapting the learning rates of individual parameters based on their historical

gradients. The significance of these methods becomes apparent when dealing with

complex models and large datasets, as they enable faster convergence and often help

avoid issues like vanishing or exploding gradients.

Neural networks are also prone to over-fitting. When this happens, all parameters

will be set to eliminate the loss on training data, while the loss on unseen validation

24

data will increase. To mitigate this problem, models use regularization techniques

that enhance the generalization ability of neural networks, by introducing some kind

of noise in data or the model. Popular regularization techniques include Dropout,

L1/L2 regularization, data augmentations, and using ensemble methods.

Another commonly used regularization technique is Batch Normalization [146].

Batch Normalization addresses the internal covariate shift problem, where the distri-

bution of activations in hidden layers changes during training, impacting convergence.

It works by normalizing the input of each layer in a mini-batch to have zero mean and

unit variance. Batch Normalization is applied independently to each layer, introduc-

ing learnable scale and shift parameters to allow the model to adapt and normalize

data. Batch Normalization not only acts as a regularizer but also enables the use of

higher learning rates and provides some degree of robustness to the choice of initial-

ization parameters.

All of these techniques are ubiquitously used for more complex machine learning

models that use backpropagation.

Convolutional Neural Networks (CNNs) are a specialized class of neural

networks designed for processing grid-structured data, such as images. At a high

level, CNNs operate by using convolutional layers to detect hierarchical patterns and

spatial hierarchies within the input data. These layers consist of learnable filters that

convolve over the input, capturing local features and gradually aggregating them to

recognize complex patterns. Although CNNs are not typically applied for program

optimization, Yang et. al [147] pioneered using CNN to identify compiler optimization

levels in binary files, while Sharma et. al [148] used CNNs to evaluate the quality

of the code. CNNs could be useful in analyzing the execution profile of parallel

applications, but this research is yet to come.

25

Graph Neural Networks (GNNs) are designed to operate on graph-structured

data, making them particularly effective for tasks such as program optimization that

involve relational information and complex dependencies. At a high level, GNNs op-

erate by iteratively aggregating information from neighboring nodes and updating

node representations based on both node features and the graph structure. Pro-

graML [149] proposes a graph-based representation based on compiler IRs and uses

GNN to perform a set of 5 most commonly used compiler analyses. nGraph [150]

passes its graph IR to a transformer and generates optimized code for the selected

backend. XLA [151] automatically replaces subgraphs from Tensorflow with opti-

mized binaries. Many more work have been proposed [152–158]

Reinforcement Learning (RL) sets up the optimization problem as a sequen-

tial decision process in which an agent interacts with an environment and learns to

maximize a cumulative reward signal. The agent learns optimal strategies through ex-

ploration and exploitation, updating its policy and value function of the environment

based on the observed outcomes. As a learning mechanism, RL can use any machine

learning architecture including use decision trees, neural networks, and transformers.

This approach has become particularly popular in the compiler community since

it provides a natural interface that enables the compiler to try and learn the best

optimizations. Neurovectorizer [159] uses deep RL to improve the vectorization of

CPU loops by tuning vectorization width and interleaving count. Chameleon [160]

trains a policy network to guide an adaptive algorithm to sample well-performed

parameters from configuration space. MLGO [161] uses Policy gradient and Evolution

strategies to optimize binary size by inlining functions. PolyGym [162] explores loop

schedules combining polyhedral representation with RL, while CompilerGym [163]

enables the user to apply different RL algorithms for program optimization.

26

Recurrent Neural Networks (RNNs) and Long Short-Term Memory

(LSTM) networks are specialized to process sequential data. RNNs are capable

of capturing dependencies and patterns in sequential information by maintaining a

hidden state that evolves. LSTMs, an extension of RNNs, address the vanishing gra-

dient problem and facilitate the learning of long-term dependencies in sequences. At a

high level, both RNNs and LSTMs operate by iteratively processing input sequences,

updating their hidden states, and using these states to make predictions or capture

relevant information.

Since they can process sequential data such as text, these methods are ideal tools

for code optimization. Neural Programer [164] uses a small set of arithmetic and

logic operations to perform complex arithmetic and logic reasoning, guided by RNN.

Liang et. al [165] use two RNNs to map natural language to programs and use

Lisp interpreter for execution. Wei et. al [166] use LSTMs for code generation and

summarization, while Shido et. al [167] use LSTM to summarize code from abstract

syntax tree.

Transformers are the groundbreaking architecture that upgraded RNNs and

LSTMs by using just an attention mechanism. They process input sequences by at-

tending to all positions simultaneously, enabling parallelization and efficient modeling

of dependencies. The self-attention mechanism allows the model to weigh the impor-

tance of different elements in the input, capturing long-range dependencies effectively.

Transformers consist of 2 elements: 1) Encoder - which applies bidirectional attention

and transforms the input sequence in high dimensional embedding space, 2) Decoder

- which applies masked attention and auto-regressively generates next tokens [69]. In

addition to the original model, many alternative architectures were proposed includ-

ing encoder-only and decoder-only transformers, even Graphormer [158] that accepts

27

graphs as input. Encoder-only transformers are usually used for classification tasks,

and decoder-only- transformers are usually used for generation tasks.

Scaling up transformers to several billions of parameters led to the development

of large language models (LLMs) that are heavily used for code generation. Alpha-

Code [168] uses exercises from programming competitions to generate code in Python

and C++ from problem description. Models such as Code Llama [169], Codex [15],

ChatGPT [170] and many more [171–176] are trained to perform multiple tasks includ-

ing code generation, code search, code summarization, and documentation generation.

LLMs trained on source code have also been used for program fuzzing [177–179], test

generation [180], source-to-source translation [181], code weakness identification [182],

and automated program repair [183,184].

Challenges in Machine Learning for Compilers

Machine learning encompasses a range of issues that researchers and practitioners en-

counter while developing and deploying models. Key challenges include the demand

for large labeled datasets to train robust models, issues related to the interpretability

and explainability of complex algorithms, and the potential biases embedded in train-

ing data that might not contain representative data [185]. Additionally, a need for ef-

ficient transfer learning techniques [186] for adaptability on diverse architectures, and

preserving semantic correctness further contribute to the intricate challenges [187].

Data availability. Unlike some well-explored domains in machine learning where

large labeled datasets are readily accessible, compiler optimization tasks often lack

diverse and comprehensive datasets. Gathering annotated data for compiler-specific

optimizations is resource-intensive and may not capture the full spectrum of complex-

ities present in real-world code. This scarcity of labeled data limits the capacity of

28

machine learning models to generalize across a wide range of programming languages,

code structures, and optimization scenarios. Addressing the data availability problem

requires innovative solutions, such as data augmentation techniques, transfer learning

from related domains, and collaborations to establish shared repositories of compiler-

specific datasets, ensuring that machine learning based compilers can robustly adapt

to diverse code bases and optimization challenges.

To address this problem, two solutions were proposed: 1) Design a stochastic code

generator, and 2) Scrape and build numerous Github projects. Compiler fuzzers, such

as CSmith [188] and llvm-stress [12], represent convenient methods for the genera-

tion of diverse code examples with various properties. However, the test cases these

generators produce are not meant to generate real-world code, which can limit their

use for out-of-distribution programs. Alternatively, many machine-learning models

were developed to generate diverse code examples from a given dataset [189–192].

Although these models represent a significant step forward, they usually generate

single-function files that are often hard to compile and execute.

The second solution involves scraping code from a multitude of GitHub projects,

thereby compiling a more extensive and diverse dataset. While this method raises eth-

ical and legal considerations related to data usage and licensing, it has the potential to

capture a broader range of optimization challenges encountered in real-world software

development. However, the diversity of programming languages, build systems, and

project structures on GitHub poses a significant obstacle. Automated code execution

requires addressing issues such as dependency management, platform variations, and

potential security risks associated with executing unknown code.

Feature Design and Model Selection. Designing a representation that cap-

tures relevant sets of features, and selecting an appropriate model represents an es-

29

sential step of the machine learning training process. Unlike images, where data is

described with a 2D grid, or text where data is represented as a stream of tokens,

code structure contains more information that should include not just algorithmic

meaning but also its interaction with hardware. A meaningful representation of code

involves both syntactic and semantic aspects and captures the intricacies of program

flow, variable dependencies, and the underlying architecture. Furthermore, the rep-

resentation should be sensitive to language-specific nuances and adapt to the diverse

programming paradigms present in different codebases.

The substantial piece of previous work [112–115, 118, 120, 124] extracts a hand-

written set of features for a given program, which is a challenging task. The process

of manual feature extraction is not only time-consuming but also doesn’t translate

to diverse codebases, hindering its scalability and generalization across programming

languages. Moreover, the narrow focus of hand-crafted features may overlook sub-

tle yet crucial patterns and relationships within code that can significantly impact

compiler optimizations.

Graph-based representation is a natural way to capture meaningful relations be-

tween variables and is heavily used for compiler analysis. These kinds of representa-

tions work well for the prediction of node and edge features but rarely can implement

standard graph algorithms necessary for compilers. As graphs grow in size, the com-

putational demands increase exponentially. Developing algorithms capable of han-

dling large-scale graphs without compromising performance is a significant challenge.

Finally, with the development of LLMs, the text representations become relevant.

Although this representation could encode all relevant information, reasoning about

code semantics is significantly more challenging, which could impede the learning pro-

cess. Overcoming these challenges is essential for harnessing the potential of machine

30

learning based compilers and this area is under active research.

Semantic Correctness. The Semantic Correctness problem presents a signifi-

cant challenge when leveraging machine learning for code generation and optimiza-

tion. Ensuring that the generated code not only compiles and runs but also adheres

to the intended semantics and logic of the original code is a difficult task. machine

learning models, especially those trained on diverse and extensive datasets, may pri-

oritize syntactic correctness over semantic accuracy. This issue becomes particularly

pronounced when dealing with subtle language-specific nuances, domain-specific con-

straints, or ensuring compatibility with specific libraries and frameworks.

There are two ways to address this problem: 1) Define a semantic-invariant set

of actions that influence performance, and 2) Generate an extensive number of unit

tests and validate the behavior of the generated code. LLVM and GCC made a step

forward by introducing optimization flags, that are heavily used by machine learning

based compilers. These principles could be lowered further by defining appropriate

mathematical representations and a set of operations that describe semantic-invariant

properties such as commutativity, associativity, and rearranging read instructions.

Programmers, similar to machine learning models, often introduce bugs, while

writing and optimizing their code. To prevent major bugs, writing unit tests became

a standard practice in software engineering, which ensures that code executes cor-

rectly most of the time. However, relying solely on extensive testing may introduce

peculiar bugs and compromise software reliability. Achieving a balance between auto-

mated testing and formal verification methods is crucial for advancing the reliability

of machine-generated code. As this interdisciplinary field evolves, the development of

robust methodologies will be paramount to fostering trust in machine learning based

code generators within the software engineering community.

31

Chapter 3

Optimizing Tensor Programs with Reinforcement

Learning

3.1 Introduction

Contemporary advances in machine learning (ML) have led chip designers to develop

extremely powerful chips to accelerate computationally intensive ML workloads. For

instance, Nvidia introduced tensor cores [193, 194], Intel and AMD added Advanced

Vector Extensions (AVX) [195, 196], Fused Multiply-Add (FMA) [197], and Vector

Neural Network Instructions (VNNI) [198], while Google introduced Tensor Process-

ing Units (TPUs) [199]. Moreover, hardware companies started making ML-specific

chips such as Graphcore [200] and Cerebras [201].

Advanced compiler technology is necessary to fully harness the power of advanced

hardware. However, traditional compilers have several limitations that impede their

ability to do so.

First, traditional compilers have been developed for a limited set of Instruction

Set Architectures (ISAs) with similar programming models, making it difficult to

adapt them to exotic hardware with different chip resources. Even with the fron-

tend/backend separation introduced by LLVM, the task remains challenging because

traditional representations are not easily optimized for novel hardware. For example,

IRs designed for conventional CPUs may not adequately represent the parallelism or

32

specialized instructions in GPUs or FPGAs.

Second, as traditional compilers are extended to cover more use cases, they become

increasingly complex, with hundreds of optimization passes that frequently depend

on one another. This complexity increases development and maintenance costs.

Finally, traditional “catch-all” compiler techniques fail to fully utilize novel re-

sources on emerging hardware designed for specific workloads.

So, what are our alternatives to traditional compilers? Expert-optimized libraries,

autotuners, or something else?

Expert-optimized libraries require experts to invest enormous amounts of time,

and the work must be repeated for each new device. High-performance tensor oper-

ation libraries such as cuDNN [202], OneDNN [203], or XNNPACK [204] are usually

tied to a narrow range of hardware devices and tend to be significant in code size,

which may impede their use on mobile devices.

As an alternative approach, projects like Halide [205] and TVM [206] optimize

a high-level representation of a loop nest performing a tensor computation with a

discrete set of transformations such as loop reordering and tiling before compiling it

to a particular target hardware with the LLVM compiler. This approach provides high

performance and eliminates the need for expert-optimized libraries but introduces an

astronomical number of possible loop nest configurations (schedules).

To optimize a simple problem, such as Local Laplacian Filters, Halide estimates a

lower bound of 10720 possible schedules [205]. To find performant schedules in such a

vast space, Halide and TVM use genetic algorithms and parallel simulated annealing

with a trained cost model [206], respectively. Both approaches suffer from very large

compilation times.

Contemporary breakthroughs in deep reinforcement learning (deep RL) in com-

33

plex video games, such as those in Atari [207] and AlphaGo [208], have inspired the

compiler research communities to attempt to leverage deep RL [115, 159, 209, 210].

Similar to iterative algorithms, the deep RL agent explores an optimization space.

However, there is one crucial difference - knowledge of the search space is embedded

into a neural network. Inferring the neural network then replaces part of the search

for optimizations. This example-driven, fast optimization-space search is precisely

what ML-specific, as well as general compilers, need.

In our work, we further build on recent RL-based efforts in compiler research by

developing LoopStack [4,5] – a novel RL-guided compiler toolset for optimizing tensor

contractions that we explain in Section 3.3. Before going into details, let’s formally

define tensor contractions.

3.2 Tensor Contractions

The principal component of machine learning workloads can be expressed as a series

of tensor contractions. Tensor contractions represent the generalization of matrix

multiplication, trace, transpose, and other commonly used operations on matrices to

higher dimensions.

We show an example of tensor contraction in Figure 3.1. Tensor contraction is a

binary operation that consumes tensors, say tensor A and tensor B with dimensions

(3, 4, 2) and (4, 2), respectively. We define a reduction dimension, marked with yellow

boxes, which defines what elements of these tensors will be combined to produce a

single scalar result. The reduction dimensions of both tensors have to be the same

size. In this case, we select a dimension with size 2.

The computation between selected elements in tensors A and B consists of two

steps. First, we apply the element-wise operation between each of the two components

34

Figure 3.1 : Example of tensor contraction between tensors A and B. This computa-

tion consists of 1) element-wise operation between yellow boxes in tensors A and B

and 2) reduction operation of the result of the previous operation to a single resulting

box. The resulting tensor has a dimension of A and B without reduction dimension

{4, 3, �2, 4, �2} = {4, 3, 4}. For simple matrix multiplication, element-wise operation

is multiplication, and reduction operation is addition.

in the same relative position (one element from A and one from B). The resulting

tensor will have the same shape as the selected elements from A or B. Second, we

apply the reduction operation to sum the resulting tensor to a single scalar. This

is shown as yellow boxes in tensor C. In the general case, we can select multiple

reduction dimensions, which will be reduced to a single scalar of the resulting tensor.

Formally, we can define tensor contractions in the following way [211]. Let A,B, C

be tensors with dimensions of dA, dB, dC respectively. Similar to 2D matrix multipli-

cation, for each pair of tensors AB,AC,BC, we define the dimensions both tensors will

iterate together. Namely, these indices will have dimensions IAB = (dA + dB − dC)/2,

IAC = (dA + dC − dB)/2 and IBC = (dB + dC − dA)/2. Then, tensor contraction can

be defined with:

35

where · is scalar multiplication and Π stands for all permutations of specified dimen-

sions. Note that here, we have to do all permutations to keep the result consistent

since the iterating dimensions may be chosen in any order. To simplify notation

further, we can use Einstein notation and implicitly sum over dimensions that don’t

exist in the resulting tensor.

CΠC(I,J) = AΠA(I,K) · BΠB(J,K)

To allow the use of the non-linear activation function, used in deep learning, we extend

our notation with an element-wise operation that transforms the final result (F).

CΠC(I,J) = F (AΠA(I,K) · BΠB(J,K))

With these extensions, we can express not only general matrix-to-matrix mul-

tiplication (GEMM), matrix-to-vector multiplication (GEMV), and vector-to-matrix

multiplication (GEVM) operations, but also general machine learning primitives such

as:

• Convolutions [68] : OR,C = IR+K,C+J · ωK,J

• Pooling [68] : OR,C = max(I2R,2C)

• Reductions [212] : OR = IR,C

• Transpositions [212] : OR,C = IC,R

• Concatenations [213] : OR,C1+C2 = AR,C1|BR,C2

• Broadcast [214] : OR,C = IR

36

Besides machine learning, tensor contractions are widely used in physics sim-

ulations, spectral element methods, quantum chemistry, and other fields. Despite

many efforts [211, 215, 216], none of the state-of-the-art production compilers such

as GCC [217], and LLVM [12] can automatically transform naive tensor contraction

loop nests into expertly-tuned implementations.

3.2.1 Optimizing Generalized Tensor Contractions

The way we carry out these generalized tensor contractions has a significant impact

on performance. For example, a naive 3-nested for-loop implementation of matrix

multiplication of Figure 3.2a will result in long running times for non-trivially sized

matrices. In contrast, efficient implementations, as proposed by many researchers over

the past few decades [43,218–223], might modify the imperative loops to tile (i.e. split

into sub-matrices of appropriate sizes) the input matrices to align with architecture-

dependent resources such as caches, re-order loop dimensions to re-use data in the

innermost loop, exploit architecture features such as vector instructions to operate on

multiple elements at a time, and emit extended instructions such as fused-multiply-

add, which combine multiplication and accumulation at the instruction level. Further,

the data might be kept in exotic memory layouts, such as the channel–interleaved

format often used on Intel machines [203, 224], or the matrix tile interleaved format

proposed by Jia et al. [222,223].

Typical scheduling operations include re-ordering, splitting, fusing, parallelizing,

vectorizing, and unrolling loops [205, 225]. The scheduling options for a single task,

such as matrix multiplication, highlight the combinatorial complexity of underlying

scheduling. Different computations and platforms require varying schedules to deliver

performance gains. This results in a challenging optimization problem. Historically,

37

for i:

for j:

C[i, j] = alpha * C[i, j];

for k:

C[i, j] += beta * A[i, k]

* B[k, j]

(a) Pseudocode for basic imperative

matrix-multiplication.

Ci,j = αCin
i,j ⊕ β(Ai,k ⊗Bk,j)

(b) Equivalent declarative Einstein nota-

tion for matrix multiplication, with ⊕ =

+ and ⊗ = ∗.

Figure 3.2 : Matrix multiplication

varying techniques have been put forward to tackle this optimization, ranging from

expert-based manual optimization, analysis-driven heuristic optimization [225, 226],

to recent advances in data-driven automated schedule exploration [206,227].

3.3 LoopStack

To optimize tensor contractions, we developed LoopStack, a domain-specific compiler

stack that uses reinforcement learning to guide the optimization process. LoopStack

is designed to produce highly efficient but also predictable code, allowing both ex-

perts and, more importantly, ML-based approaches to find performant loop schedules.

Additionally, it is easily extensible and supports various processors and accelerators

while incorporating HPC optimizations that are often missing from other machine

learning compiler backends.

LoopStack consists of three parts:

• LoopNest [5] - an ultra-fast tensor compiler specialized for low-level optimiza-

tions for custom hardware.

38

Figure 3.3 : LoopStack architecture [4].

• LoopTool [5] - interface that enables the user to define a specific loop nest order

in which the computation should be performed.

• LoopTune [4] - reinforcement learning based framework for finding performant

loop schedules optimized for LoopNest.

This strategy enables the quick development of customized compilers for novel

hardware while leaving the complex problem of loop scheduling to LoopTune, which

tailors loop schedules to a given backend utilizing its optimizations.

In the following chapters, we explain each component separately.

3.4 LoopNest – Backend Optimizer

LoopNest is a powerful, lightweight, domain-specific compiler designed to optimize

deep learning workloads developed by Wasti et al. [5]. Rather than relying on ex-

tensive general-purpose compilers, it 1) utilizes a small set of expert-designed HPC

optimizations and 2) enables the use of ML techniques for tuning in conjunction with

it. LoopNest contains the following characteristics which are particularly important

39

for ML-based compilation research:

• Rapid compile times, a fraction of time compared to traditional compilers.

• Predictable and quick feedback.

• Generated machine code with performance comparable to or exceeding hand-

optimized libraries such as MKL-DNN or XNNPACK.

A core challenge in high-performance tensor operations is identifying a good ex-

ecution order — the schedule. There can be many valid schedules for a given com-

putation: loops can be split and reordered, dimensions can be split and swapped,

intermediate tensors can be packed, and so on. As a result, any scheduling tool faces

the challenge of an exponentially large search space, making simple enumeration in-

feasible. Recent work [227–229] has explored using a combination of machine learning

and structured search strategies to explore the search space automatically.

A key goal of LoopNest is to facilitate ML-based exploration of schedules. Effective

exploration depends on rapid feedback, crucial to ML approaches, particularly when

using reinforcement learning.

3.4.1 ML-centric Design

LoopNest is designed to generate optimized machine code efficiently that strictly

adheres to the user’s input. LoopNest exposes an API that allows the user to define a

specific loop nest order in which the computation should be performed. LoopNest will

not attempt to change the provided nest order or use any logic to recover user intent.

In short, LoopNest will generate a machine code that performs the exact computation

the user requested in the same order. This is crucial for ML-based autotuners, as the

40

hidden functionality in traditional compilers can make the learning problem extremely

complex.

LoopNest applies low-level optimizations that are specific to the target hardware.

It includes custom primitives in code generation, custom assembly codes, instruc-

tion reordering, reduction-sum, and other optimizations suggested by optimization

manuals for the target hardware [230,231].

Furthermore, LoopNest performs loop unrolling in a way consistent with hardware

requirements and automatically vectorizes the innermost loop. It also applies register

tiling [232], keeping a portion of the output tensor in registers at all times. To reduce

pressure on load/store units, LoopNest never generates code that spills registers to

the stack, unlike traditional compilers like LLVM and GCC. It achieves this by finding

the largest scope in which modified values can fit in the register file.

Traditional compilers perform expensive analyses to understand user intent and

optimize execution while performing equivalent computations. This can significantly

increase the compilation times and obscure the intended schedule’s impact on perfor-

mance.

LoopNest takes a different approach. LoopNest does not attempt to understand

the user’s intent and/or reorder the intended schedule, except in very few hardware-

specific cases, such as reordering loads and stores. Such optimizations highly depend

on the limitations of the target hardware, don’t require tuning, and are not beneficial

to expose to the user.

This approach allows LoopNest to perform extremely fast compilation (quasi-

linear in the number of issued instructions), which allows the user and/or ML agent

to directly and rapidly evaluate the performance of their intended schedules. This

approach greatly benefits autotuners [227,228] and reinforcement learning techniques,

41

which require both fast and accurate feedback on the quality of the schedule. Addi-

tionally, the vast amounts of data required for supervised-based methods have taken a

long time and/or many resources to collect [229] with previous approaches. LoopNest

provides orders of magnitude improvements in this domain.

3.4.2 LoopNest Optimizations

While traditional compilers typically perform multiple optimization passes, some of

which might be repeated, LoopNest is designed to use only a limited number of

well-studied optimizations to generate high-performance code. These include opti-

mizations that are commonly used in expertly designed, custom assembly, or code

generator primitives for specific problems, such as matrix multiplications [233–238]

and other primitives used in machine learning [202, 203, 222, 223, 239–241]. Addi-

tional optimizations might include instruction reordering, reduction sum, and other

optimizations suggested by optimization manuals for the target hardware [230,231].

Vectorization

LoopNest assumes that the user intends to vectorize the innermost loop in the user-

provided schedule. This design simplifies the logic while not introducing any limita-

tions to the user – the vector operation elements are executed simultaneously and,

thus, naturally belong to the innermost loop. LoopNest will, thus, attempt to vec-

torize the innermost loop. However, in certain scenarios, when the data accessed

inside the innermost loop is not contiguous, and the target hardware doesn’t support

efficient gather operations, LoopNest will fall back to scalar operations.

42

No–Spilling of the Result Tensor

The concept of tiling (or ”blocking”) for the multiple levels of a cache hierarchy and

the register file is a well-known optimization technique [43, 218, 220, 221]; referred to

as Cache Blocking Techniques in the Intel’s optimization manual [231]. LoopNest

exposes these common HPC optimizations, where a subset of the output tensor is

kept in the register file [203, 222, 223, 236, 237, 239, 241]. LoopNest never produces

code that spills the content of the register file to the stack, an approach commonly

used in traditional compilers, such as LLVM or GCC. Spilling the content of the

register file to stack puts pressure on the hardware’s load/store units, preventing full

hardware utilization.

LoopNest does not decide on blocking or tiling sizes or the size used for the data in

registers (register blocking). LoopNest instead identifies the outermost user-provided

loop for which all compute can be performed with a subset of the output tensor kept

in registers. Thus, it’s up to the user to provide a well-chosen loop order and sizes,

where the values kept in the register file can be reused many times. This approach

gives the user greater control and more predictable performance than the case when

spilling is allowed.

Reducing code size

Modern Intel processors can fetch and decode 16 bytes per cycle [231]. Thus, to max-

imize the number of instructions fetched and decoded, Intel’s manual [231] suggests

utilizing shorter encoded instructions, or instruction variants – keeping the combined

size of every two adjacent instructions to 16 bytes or less. LoopNest achieves that

in two ways. First, it prefers shorter instruction variants over longer ones, such as

preferring arithmetic instructions where all arguments are in–register, and none are

43

in memory. Second, when an instruction has an in-memory argument, such as load

instructions, LoopNest reduces the instruction sizes by using well-known SIB address

encoding or small address offsets. [222,223,236,237,239].

The ARM (Aarch64) ISA has fixed instruction sizes; thus, reducing code size boils

down to reducing the number of instructions. LoopNest achieves this by utilizing pre–

and post– pointers for all memory accessing instructions, as described in the ARM’s

manual [230] and used by XNNPACK [204]. These instructions simultaneously update

the value in the register holding the address.

Latency hiding

Finally, hiding the latency of memory accesses as well as instruction dependencies are

another well-studied techniques [223, 236, 237, 239, 241]. LoopNest employs the two

strategies described in [241]. First, to reduce exposed memory latency, it reorders

loads so that they are seen by the instruction decoder as early as possible; and second,

to reduce the instruction dependencies, when necessary, it introduces an additional

set of register accumulators for the resulting tensor, and cycles through them. The

introduced accumulators are then reduced at the end of the computation to produce

the final result.

Single Operand LoopNest

LoopNest also provides functionality for generating efficient code for a simplified

tensor contraction, where there are no reduction dimensions and only one input is

provided. This functionality is typically used for reshaping a tensor (such as NumPy’s

reshape function) but can also be used for extracting a subset of a tensor into a

smaller tensor or broadcasting elements along a tensor dimension. LoopStack requires

44

this functionality to allow the user’s schedules to reorganize the memory for faster

access [43, 218,220,221].

3.4.3 Evaluation

LoopNest’s extremely low compilation times are the most important enabler for ML-

based ML compilation. We perform a set of experiments to compare LoopNest’s

compilation time and execution time with state-of-the-art compilers often used for

machine learning based autotuning.

Compilation time experiments

We compare LoopNest’s compilation time to the LLVM compiler, a popular backend

choice for prominent tensor autotuners such as Halide [205] and TVM [206]. We used

12 common operators found in machine learning workloads over varying input sizes

for benchmarks. For LLVM code generation, we use Halide to emit schedules identical

to the ones used with LoopNest.

Table 3.1 summarizes compile time across benchmarks. Our experiments show

that LoopNest’s code generation is faster than LLVM’s compilation for all schedules,

all workloads, and all target hardware. In most cases, LoopNest can generate code

orders of magnitude faster. This is unsurprising because LoopNest generates code for

a very specific kind of loop nest, while LLVM can generate any purpose code.

Runtime experiments

In Table 3.2, we show the average run–times of the top 5 fastest schedules found by

our tuner. Our results suggest that LoopNest is generating code with comparable

or better performance than the one generated by LLVM. We additionally compare

45

x86 based CPUs Aarch64 (ARM) based CPUs (NEON)

AMD (AVX2) Intel (AVX512) Cortex A57 NVIDIA Denver2 Cortex A73 Apple M1

LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio

CONV-1 820.78 2.515 326.31 9881.9 6.206 1592.3 2948.4 9.211 320.1 3972.4 30.28 131.19 4914.6 22.077 222.61 555.24 24.763 22.422

CONV-2 1590.1 11.717 135.7 9531.3 5.803 1642.3 2481.1 8.947 277.29 4798.5 21.768 220.44 4310.1 31.053 138.8 531.12 15.261 34.802

CONV-3 762.52 5.932 128.53 11061 11.411 969.29 3113.2 17.749 175.4 4184.3 24.184 173.02 3919.1 25.51 153.63 444.29 20.435 21.742

CONV-4 885.74 41.163 21.518 10706 14.264 750.56 4084.3 66.102 61.788 5169.9 85.97 60.136 6408.8 99.952 64.119 827.22 35.605 23.233

DWCONV-1 838.46 0.294 2850.3 10551 0.280 37647 2775.9 3.801 730.28 4108.2 5.046 814.09 4844.8 2.805 1727.4 571.46 1.209 472.67

DWCONV-2 1033.8 0.472 2192 11812 0.679 17402 2795.3 2.524 1107.4 3814.5 5.204 733.06 4160.9 1.882 2210.3 470.53 0.524 897.79

DWCONV-3 969.88 0.300 3229.6 13759 1.460 9423.3 2726.6 2.158 1263.5 3666.1 4.233 866.15 3320 3.822 868.74 506.63 0.663 764.87

DWCONV-4 1000.7 0.334 2993.4 10704 0.813 13159 3474 5.511 630.34 4577.5 9.477 483.01 4197.4 2.877 1459.1 449.89 1.6 281.18

MM-64 697.37 0.384 1813.6 9099.5 0.853 10667 3432.4 7.359 466.43 4779.2 13.103 364.75 4417.6 9.171 481.7 397.59 1.327 299.68

MM-128 925.47 1.578 586.47 9044.8 0.795 11379 4991.9 11.153 447.57 5754.2 16.025 359.07 6681.1 13.956 478.72 387.82 1.119 346.63

MM-256 1118.5 2.692 415.41 18119 3.020 5999.4 5003.1 18.511 270.28 5770.9 26.485 217.9 6800.6 27.446 247.78 390.29 5.165 75.57

MM-512 1262.3 4.340 290.83 12336 4.485 2750.8 4814.2 7.485 643.17 5698.9 12.25 465.22 6471.7 14.545 444.94 1084.4 9.512 114

Table 3.1 : Compile times, in milliseconds, for LLVM and LoopNest. LoopNest per-

forms the compilation orders of magnitude faster [5].

the fastest schedules found by our tuner to the extremely efficient, hand-optimized

ones. In nearly all cases, LoopNest matched or exceeded the performances of the

hand-optimized ones.

3.5 LoopTool API

To enable users to effortlessly describe the desired computation of neural network

workloads using LoopStack, we built a domain-specific language (DSL) embedded in

Python and a compiler frontend named LoopTool. LoopTool exposes a declarative

API for user computation definition and operates on an IR composed of an annotated

data-flow graph (ADFG) consisting of N-dimensional tensor operations. The ADFG

describes the underlying computation, memory layouts, and execution. LoopTool

then lowers the ADFG into a series of loops, which are then compiled with LoopNest.

We use an Einstein-like notation [242] as it enables the user to quickly describe

46

x86 based CPUs Aarch64 (ARM) based CPUs (NEON)

AMD (AVX2) Intel (AVX512) Cortex A57 NVIDIA Denver2 Cortex A73 Apple M1

LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio LLVM LN Ratio

CONV-1 86.767 87.638 1.01 72.943 162.48 2.227 11.021 11.126 1.009 10.968 14.782 1.348 9.847 9.399 0.955 98.121 97.51 0.994

CONV-2 45.765 71.482 1.562 13.813 156.78 11.35 11.276 11.179 0.991 13.407 14.511 1.082 9.810 9.247 0.942 95.743 92.027 0.961

CONV-3 9.495 72.433 7.629 96.448 184.4 1.912 8.181 10.183 1.245 6.407 13.27 2.071 6.467 7.998 1.237 53.681 83.252 1.551

CONV-4 3.307 90.722 27.434 123.73 181.72 1.469 5.325 9.569 1.797 4.361 12.532 2.874 2.951 7.686 2.604 46.806 77.952 1.665

DWCONV-1 48.695 62.541 1.284 48 57.592 1.200 6.352 6.234 0.982 10.243 11.858 1.158 3.999 4.502 1.126 40.133 39.01 0.972

DWCONV-2 39.203 53.465 1.364 28.302 37.671 1.331 5.120 5.703 1.114 7.107 7.969 1.121 2.518 2.773 1.101 42.865 43.438 1.013

DWCONV-3 62.873 84.848 1.349 57.544 88.094 1.531 6.934 7.721 1.113 10.65 12.551 1.178 5.764 6.457 1.120 70.796 76.261 1.077

DWCONV-4 77.071 84.21 1.093 125.04 159.38 1.275 9.687 10.174 1.050 12.665 14.717 1.162 7.607 8.017 1.054 81.588 80.901 0.992

MM-64 85.808 102.2 1.191 144.67 187.65 1.297 12.751 13.441 1.054 14.039 15.754 1.122 9.523 10.166 1.067 91.18 199.81 2.191

MM-128 92.692 102.5 1.106 168.84 185.19 1.097 12.417 12.496 1.006 14.253 15.291 1.073 9.246 9.506 1.028 91.763 98.4 1.072

MM-256 92.862 100.21 1.079 170.18 182.46 1.072 11.428 11.401 0.998 14.241 14.645 1.028 8.686 8.610 0.991 95.597 99.902 1.045

MM-512 90.189 98.199 1.089 160.42 159.59 0.995 6.997 8.327 1.19 14.395 13.894 0.965 6.336 6.890 1.087 89.618 97.65 1.090

Table 3.2 : The average execution performance of top 5 schedules, in GFLOPS,

for code generated by LLVM and LoopNest. LoopNest achieves comparable (within

measurement error) or superior performances while taking a fraction of the time to

generate the code [5].

the intended mathematical operations even for complex machine learning models. We

further provide a minimal yet powerful intermediate representation (IR) and limit the

API such that all relevant optimization operations can be decomposed into a series

of operations on individual nodes in the ADFG. Despite resembling Halide’s pipeline

scheduling states [227], it is impossible to represent illegal schedules in our IR. This

is particularly important for ML-based approaches, such as reinforcement learning.

3.5.1 Declarative API

Figure 3.4 shows an example of matrix multiplication in LoopTool’s declarative

Python DSL. The expression lt .Var(”m”) defines an indexing variable with the cor-

responding name. Next, the expression lt .Tensor([M, K]) defines a 2-dimensional

47

import loop_tool as lt

M, N, K = lt.Var("m"), lt.Var("n"), lt.Var("k")

A = lt.Tensor ([M, K])

B = lt.Tensor ([K])

C = lt.Tensor ()

C[m, n] += A[m, k] * B[k]

Figure 3.4 : LoopTool’s Python embedded declarative DSL [5].

tensor. LoopTool uses symbolic (i.e., named) dimensions [243], simplifying indexing

semantics and encouraging a simple interaction model for manipulating traversal and

memory layouts of higher dimensional tensors. The expression C[m,n]+ = A[m, k] ∗B[k]

defines computation using the aforementioned Einstein notation; here k is a reduction

dimension. LoopTool’s computation language supports element-wise computations

(with broadcast semantics), associative reductions across arbitrary dimensions, and

a restricted set of indexing semantics.

3.5.2 Intermediate Representation (IR)

LoopTool’s ADFG is based on an intermediate representation with annotations on

each node. Each node is associated with its output – a virtual buffer materialized

according to the user-provided schedule. Figure 3.5 (left) demonstrates a matrix

multiplication without annotations. A node’s output size is not materialized until

the IR is lowered to loops. The materialization logic always attempts to minimize

the total memory used. For example, two nodes operating on a virtual buffer of size

N in a shared loop over N do not need to allocate the full N memory elements for

48

read(0)

%a[m, k]

multiply

%tmp[m, k, n]

add

%c[m, n]

read(1)

%b[k, n]

write(2)

read(0)

%a[x, y, z]

f

%b[x, y, z]

write(1)

Figure 3.5 : Matrix multiplication in LoopTool (left). A point-wise application of the

function f across all three dimensions of %a (right) [5].

their intermediate. Instead, the intermediate will be size one and reused N times.

LoopTool’s ADFG has three fundamental types of nodes: 1) Read/write nodes,

2) Arithmetic nodes, and 3) View nodes.

Read/write nodes denote reads or writes from and into user-provided mem-

ory, as well as associated layouts and sizes. These nodes contain an ordered list of

symbolic dimensions. The ordered list of dimensions represents a row-major order

(lexicographical order) of either input or output memory. Because LoopStack is em-

bedded in either Python or C++ applications, these nodes are used as interfaces

with other operations that LoopStack does not handle. An example would be the

specification of the input convolution layouts NCHW [70] or NHWC [71], where N

is the depth of the network, C is number of channels, H is the chanal height, and

49

W is the chanal width. Both of these are well handled and trivially manipulated in

the LoopTool IR. In the IR, read nodes have no inputs (predecessors), whereas write

nodes have a single predecessor and no output (successors). These are effectively

source and sink operations in the graph.

Arithmetic nodes operate on one or multiple input virtual buffers and output

a single virtual buffer. The ordered list of dimensions associated with these nodes

denotes how output memory should be laid out (given the corresponding scope of

their execution). Arithmetic nodes, unlike read and write nodes, can take multiple

inputs. This represents the typical operation applied to inputs. For example, adding

two inputs works as expected to yield a single output.

Extending this concept to higher dimensions forces us to consider when two inputs

do not have the same dimensions. Due to the symbolic nature of the dimensions in

LoopTool, we can distinguish two dimensions of the same size as being mathematically

distinct. To handle the application of arithmetic in higher dimensions, we employ

implicit broadcasting akin to Numpy [244] semantics. Dimensions not present in the

output are implicitly reduced according to the arithmetic of the associated node.

View nodes represent symbolic indexing constraints over tensor dimensions, al-

lowing robust view semantics. Any affine combination of iteration over the output

dimensions can be indexed into an input dimension. This enables us to represent

windowed operations as well as concatenations. By using index constraints rather

than index equations, we preserve the meaning of the underlying computation and

can freely split and permute variables and layouts. Further, we can still apply scope-

based memory minimization logic by keeping indexing math symbolic.

50

3.5.3 Lowering to loops

LoopTool lowers its IR to an internal loop tree structure before invoking LoopNest.

This is done by traversing the ADFG topologically and eagerly emitting loops required

for each node. A reference to the current innermost loop is maintained throughout

this process, with each subsequent loop nesting inside the reference. If any node

requires a loop that is an ancestor to the current reference, there is no need to emit

the loop again, and it is skipped. This naturally induces loop coalescing (typically

referred to as loop fusion).

Consider nodes shown in Figure 3.5 (right). We can assume an annotation of %a

and %b, both with loop order [x, y, z]. When visiting %a’s node, we emit the loop

tree shown in Listing 1.

Later, while visiting %b’s node, we note that the reference (which is at location

%a) contains a loop for x, y, and z in order. We thus reuse all loops and implicitly

”fuse” node %b. This is shown in Listing 2

We find the nodes can be executed in the same innermost loop. In this case, the

resultant allocation size of %a would be 1.

Listing 1 Lowering %a emits three new loops [5].
iter x:

iter y:

iter z:

%a[x, y, z] = read(x, y, z)

...

51

Listing 2 Lowering %b reuses all loops [5].
iter x:

iter y:

iter z:

%a[x, y, z] = read(x, y, z)

%b[x, y, z] = f(%a[x, y, z])

However, if the nodes had different loop annotations, such as %b annotated with

[x, z, y], we would not be able to share every loop. Schedule in Listing 3 shows

code that only needs to allocate |y| · |z| elements in tensor a.

Listing 3 Only loop x is shared across the two nodes [5].
iter x:

iter y:

iter z:

%a[x, y, z] = read(x, y, z)

iter z:

iter y:

%b[x, y, z] = f(%a[x, y, z])

In the case of reductions, we cannot always share loops. Consider a reduction node

%R over variable z with loop order [x, y, z] depended on by %a with the same loop

order; see Listing 4. The loop for z must run twice for correctness. While necessary

for reductions, this type of behavior may also be preferable in other contexts.

52

Listing 4 Sharing loop z between %R and %a would be mathematically incorrect [5].
iter x:

iter y:

iter z:

%R[x, y] = reduction(...)

iter z:

%a[x, y, z] = %R[x, y] + ...

Manually preventing loop fusion can induce larger intermediate memory alloca-

tions. This is often beneficial when computation benefits from packing memory into

a cache-friendly layout before computation [245]. Furthermore, reusing storage may

reduce parallelism [246]. To express this, LoopTool has a second form of annotation

for nodes called staging that prevents the reuse of specific loops. In Listing 2, %a and

%b share an entire loop nest. If we were to stage the loop for %a over z, the resultant

lowering would increase the allocation size of %a to |z| (Listing 5).

Listing 5 z is staged, so %a is materialized with an allocation of size |z| [5].
iter x:

iter y:

iter z:

%a[x, y, z] = read(x, y, z)

iter z:

%b[x, y, z] = f(%a[x, y, z])

53

Generalizing to computations with multiple loop nests

Some computations or their schedules can result in a sequence of multiple nested loops

that may share a set of outer loops, effectively forming a tree of loops. We developed

a loop tree interface to generalize our approach to these workloads. The loop tree

interface provides a simple API to build up a tree, where inner nodes correspond

to for-loops, and leaves correspond to an innermost computation over tensors or a

transposition of tensors. LoopNest then compiles all independent nests and executes

the tree. The final result is a function that can be called with the appropriate input,

intermediate, and output tensors to realize the tree-defined computation.

LoopTool Tuning Interface

To explore schedule space, LoopTool defines a tuning interface that enables an expert

or tuning script to manipulate loop nest. From a given computation, we can de-

rive various valid schedules by splitting and reordering loops, swapping and splitting

dimensions, and packing intermediate tensors. Starting from a tensor computation

defined by DSL (Figure 3.6), LoopTune constructs an intermediate representation

from which we can begin schedule exploration.

The loop nest representation consists of a computation nest and a write-back nest.

Computation nest contains a series of loops that could have annotations such as unroll

or vectorize that direct LoopNest implementation. In the loop body of the inner

loop, we define the element-wise operation between two tensors – multiply, and the

reduction operation – add. Element-wise the operation takes tensors with a defined

access pattern, resulting in a temporary tensor with dimension equal to the union of

tensor %0 and tensor %1 dimensions. The reduction operation sums the temporary

tensor’s dimension k. Finally, the write-back nest defines how the temporary tensor is

54

Figure 3.6 : Tuning loop schedule with LoopTool. Try it on https://loop-

tool.glitch.me.

written back to memory. With this representation, LoopNest gets information about

the memory access pattern, reduction dimension, and write-back pattern, uniquely

identifying execution order.

Method swap enables LoopTool to swap any two loops with different iterators in

the same loop nest. Method split divides the loop for a given factor and creates a new

loop with the same iterator. Method merge revert split operation and merge given

loop with the parent loop with the same iterator. Methods vector and unroll annotate

a given loop that will be optimized with LoopNest. Finally, method GFLOPS eval-

55

uates the performance of the given loop nest. These methods allow us to manually

explore and assess schedule space or incorporate them in searching scripts.

Since the number of possible schedules grows exponentially to loop nest depth,

deriving an efficient exploration algorithm is paramount. In the next section, we

explain how we use reinforcement learning to navigate optimization space efficiently.

3.6 LoopTune - Frontend Tuner

LoopTune is a reinforcement-learning framework for finding performant loop sched-

ules. LoopTune manipulates loop schedule space through LoopTool’s Tuning API

and generates the binary from the given schedule with LoopNest. LoopTune aims to

train the policy network to find a close-to-optimal schedule for the given loop nest in

a few steps, decreasing auto-tuning time to the order of seconds.

This section introduces a novel LoopTune action space suitable for RL training

and graph-based embedding of tensor computations and evaluates five popular RL

algorithms in optimizing loop schedules. By combining reinforcement learning with

appropriate representations and a well-chosen optimizer, we can generate faster code

than baseline traditional search techniques, outperform popular autotuners such as

autoTVM and MetaSchedule, and perform at the level of an expert-optimized library

Numpy.

3.6.1 Learning to Optimize Tensor Computations

To optimize tensor operations, we separate the problem of finding optimal loop range

and order (schedule) from hardware-dependent low-level optimizations, such as vec-

torization. To find performant schedules, LoopTune uses deep reinforcement learning

to train a policy network, while LoopNest [5] applies low-level tensor optimizations

56

Figure 3.7 : LoopTune training loop. LoopTune transforms the generated benchmark

to an intermediate representation (IR) and uses LoopTool API to apply actions and

get observations, while LoopNest compiles and executes the loop nest, providing the

reward [4].

and generates executable code given a schedule.

The process begins by creating an RL environment by using CompilerGym [247]

(Figure 3.7). This framework allows us to map the problem of finding performant

schedules to RL methodology and using state-of-the-art libraries such as RLlib [248]

for training. To create an environment in CompilerGym, we define an action space,

an observation space, and a reward that will be used as an optimization criterion

during RL training. Additionally, we define a set of benchmarks that represent tensor

operations. For all benchmarks, we assume that loop bounds are constant.

In each training epoch, we convert the benchmark to an intermediate representa-

tion by adding an “agent” annotation to the first loop (Figure 3.8). In each step, the

agent applies an action from the action space to the current loop, changing the loop

57

schedule. LoopTune encodes our novel graph-based state to a vector representation

(described in Section 3.6.4) and feeds it to the reinforcement learning training loop.

Finally, LoopNest compiles and evaluates the loop schedule, which provides a reward

signal for training the policy network.

In the inference phase, LoopTune iteratively calculates the policy network’s best

action and applies it to the current state. Since this procedure doesn’t include loop

nest evaluation, it is fast and constrained only by the speed of the inference. Prac-

tically, this enables the policy network to reach the desired state quickly in a matter

of seconds.

3.6.2 Defining an Action Space

The LoopTool Tuning API allows LoopTune to swap the positions of two loops,

given their line numbers, and split a loop, given its line number and a specified

tile size. Rather than having such parametric actions that are inherently hard to

train [249], LoopTune defines a novel action space shown in Figure 3.8 and introduces

the abstraction of an agent that traverses loop nests and applies actions on each loop.

The agent uses up and down actions to move the cursor without changing the loop

nest structure. The swap up and swap down actions direct the agent to exchange the

position of the current loop with its neighbor, moving the agent’s cursor, respectively.

The split family of actions creates a new loop with the same iterator, dividing the

loop range with the specified split parameter. If the split parameter does not evenly

divide the loop range, the current loop will have a remainder or “tail”, which will

be executed at the end of the loop nest execution. We limit the size of the split

parameter to 4, 8, and 16.

Since we always start from the basic implementation of loop nest, we can reach

58

Figure 3.8 : Optimizing ranges and order of loops for matrix multiplication using

LoopTune’s action space [4].

any configuration without ever using the merge method. Similarly, instead of using

unroll and vectorize, we expect LoopNest to vectorize the most-inner loop and unroll

the rest automatically.

Limiting the action space in this way simplifies the problem in several ways. For

example, a smaller number of possible actions enables the RL algorithm to explore

and become more confident [249] with each action for different states. This might

force the agent to use longer sequences of actions to reach certain states, but this is

not a problem since each action other than up and down changes the loop nest and

provides a non-zero reward signal. Furthermore, many states benefit from similar

action sequences, which allows training to converge faster.

To simplify the design, we decided to apply a fixed number of actions for opti-

mization rather than having an action that terminates the search. Our experiments

have shown that having such an action often prevents exploration and converges to

a local minimum.

59

3.6.3 Defining a Reward

For the evaluation metric, we use billions of floating-point operations per second

(GFLOPS). To measure GFLOPS, LoopTune uses LoopNest to compile and execute

loops on a CPU. To ensure reliable results, LoopNest excludes the first 20 iterations

as a warm-up and times multiple executions of the loop nest, taking the fastest

measurement.

During training, the agent applies action (A) from state S, moving it to the next

state S’. The feature extractor maps the internal representation to the vector (S) used

as input to the neural network. LoopNest calculates the reward for the applied action

using the formula:

reward =
GFLOPS(S ′)−GFLOPS(S)

GFLOPS PEAK PERFORMANCE

This normalizes all rewards, making training more stable. Rather than relying on

peak performance from hardware specifications that may be imprecise, we evaluate

peak performance empirically before the training by running the series of kernels with

high arithmetic intensity, which always falls within a few percent of the theoretical

peak. Finally, we send a tuple (S, S’, A, R) to the RL library that performs one

training step.

3.6.4 Defining the State Representation

Each loop nest consists of a nest that computes operations and a write-back nest that

writes the result to the memory. We use the graph-based representation shown in

Figure 3.9 for state representation. On this graph, there are three kinds of nodes:

loops (rectangles), data (ellipses), and computation (diamonds). There are three

kinds of edges. Black edges connect loops and computations that are nested from top

60

Figure 3.9 : Text representation shows the algorithm. Schematic representation shows

the memory layout. Graph representation explains nesting order (black), access pat-

tern (red), and data flow (blue). Vector representation aggregates graph representa-

tion for the training [4].

61

to bottom. Blue edges represent data flow, while red edges represent the strides of

each loop accessing tensors that read from memory (A, B) or write to memory (T).

Stride is the distance in memory between two tensor elements when we increment

only the index of a given loop. If this number is large, the iterating loop will try

to fetch distant data in memory that may not be stored in the cache, resulting in a

cache miss.

We map the key features in a vector to make our representation usable for standard

RL optimizers. In our vector representation, each loop is described with 20 integer

values, namely:

• (1) Is the agent’s cursor on the loop

• (1) Loop size

• (1) Loop tail

• (1) Does loop belong to computation or write-back nest

• (16) Histogram of strides frequency

Figure 3.10 : Histogram of strides frequency [4].

62

The histogram of strides frequency (Figure 3.10) represents each loop’s cumulative

distribution of access strides. In other words, it shows how many accesses with given

strides are produced from the given loop. We calculate strides from the tensor shape

and iterator position for each loop. Since stride can be an arbitrary integer larger

than zero, we discretize strides to bins of size 2N , where N ∈ {0...15} to match the

sizes of cache lines.

Agent bits are necessary since they give meaning to all actions since they depend

on the cursor position. Size and tail bits define how many times memory is accessed

with each stride, which distribution is captured in strides frequency. The computation

loop shows whether the loop is used for computation or write-back.

This is a minimal set of features for the RL algorithm to learn memory access

patterns, which is critical to optimizing memory-bound computations such as tensor

contractions. Adding features that describe computation in the loop body would be

beneficial for compute-bound applications.

3.6.5 RLlib - Library for Reinforcement Learning

In our work, we evaluate several learning algorithms, supported by RLlib [248], in-

cluding Deep Q Learning (DQN), Apex Deep Q Learning (APEX DQN), Proximate

Policy Optimization (PPO), Actor-Critic (A3C), and Impala.

DQN [250] attempts to learn the state value function by using experience replay

for storing the episode steps in memory for off-policy learning, where samples are

drawn from the replay memory at random.

APEX DQN [251] creates instances of environment for each actor and collects

the resulting experience in a shared experience replay memory, prioritizing the most

significant data generated by actors.

63

PPO [252] alternates between sampling data through the interaction with the

environment while using stochastic gradient ascent with minibatch updates.

A3C [253] calculates gradients on the workers directly in each episode and only

broadcasts these gradients to the central model. Once the central model is updated,

parameters are sent back to the workers.

IMPALA [254] provides a scalable solution for collecting samples from individual

agents and running stochastic gradient descent in the central loop.

3.7 Search to Optimize Tensor Programs

We implement a set of traditional search algorithms to set a baseline for our com-

parison. Traditional approaches for auto-tuning tensor programs are based on hill

climbing [92, 114], genetic [96–98], and various search algorithms [255]. These algo-

rithms can find performant schedules for a single program, but the search time and

the quality of the solution depend heavily on the smoothness of the optimization

space. If the optimization sequence to highly rewarded states includes some actions

that produce negative rewards, hill climbing algorithms can converge to local minima.

Genetic algorithms, on the other hand, use many computational resources since they

converge slowly.

We implemented the following set of algorithms (Figure 3.6):

• Greedy search with lookahead of 1 and 2

• Beam Depth First Search (BeamDFS) with width 2, 4

• Beam Breath First Search (BeamBFS) with width 2, 4

• Random search

64

Figure 3.6 : Traditional search approach in finding the optimal sequence. Actions

(edges) are sorted by the performance of the next state [4].

First, we introduce the family of Greedy search algorithms with arbitrary looka-

head. In each step of this algorithm, we evaluate all possible states after applying

lookahead steps and select the step toward the most promising state. With a looka-

head of 1, the agent stops if there is no better action than the current state. In con-

trast, the lookahead of 2 enables the agent to tolerate one detrimental step that leads

to a more promising solution. Ideally, with a large enough lookahead, Greedy Search

could overcome the problem of local minima for actions with negative rewards. Unfor-

tunately, such computation comes with the cost of O(steps ∗ |action space|lookahead),

which is prohibitively expensive for large lookaheads.

Second, we implemented a family of Beam search algorithms with arbitrary width.

65

In each step, we calculate the best width actions and expand them further until we

reach the specified depth of the search tree. Expansion of the states could be done in

depth-first (BeamDFS) and breadth-first (BeamBFS) manner, and search properties

drastically differ when search time elapses before the full search graph is constructed.

Complexity of both of these approach is O(widthsteps), where width < |action space|.

BeamDFS can be seen as an extension to the Greedy algorithm with a lookahead

of 1, with few additions. It doesn’t terminate if the next state is worse than the

current, and it recursively visits all states of the search graph where each node has

maximum width children. This enables it to tolerate non-convex parts of spaces as

long as the optimal action ranks better than other actions in the current step.

The BeamBFS variant finds a performant action sequence iteratively as it builds

a search graph for each number of steps. This approach would be beneficial if the

performant sequence is shorter than the specified search depth.

Finally, Random Search randomly chooses a sequence of actions with a specified

length. The benefit of this search is that it can uniformly explore many diverse

states, providing a general idea of the landscape. From our experiments, random

search provides surprisingly good results that we elaborate on in the next section.

3.8 Experiments

We evaluated LoopTune on a series of benchmarks to answer the following questions:

• How do different RL algorithms compare to each other?

• How does LoopTune compare to traditional search algorithms?

• How does LoopTune compare to optimized libraries and autotuners like TVM?

66

The benchmark dataset consists of synthesized loop nests for matrix multiplica-

tion. The matrix multiplication dataset has 2197 untiled loop nests for matrices with

dimensions in the range from 64 to 256 with the step of 16. We train on the 80%

split of the dataset (size 1757) while leaving 20% for the test dataset (size 440).

Experiments are performed on an Intel Xeon CPU running on 2.20GHz, with a

peak performance of 114.204 GFLOPS, 40 CPU cores, and 2 Nvidia Quadro GP100

GPUs. The CPU has cache sizes L1 (data/instruction) 1.3 MB, L2 10MB, L3 52MB.

3.8.1 RLlib Training Analysis

We describe our problem as a CompilerGym environment with action space, represen-

tation, and reward function and use RLlib [248] library to train the policy network.

We compare PPO, A3C, DQN, APEX DQN, and Impala to find the best training

algorithm. In all cases, we use a network with fully connected layers, arbitrary width,

number of layers, and the same feature representation.

To find the optimal parameters for each training algorithm, we run a hyper-

parameter sweep for the learning rate, exploration factor, depth, and width of the

neural network. After finding the best parameters for each training algorithm, we run

the final training for 4000 iterations and stop training early if the average reward per

epoch converges to some constant. The optimizer applies ten actions in each epoch

and updates the neural network with a reward signal. Finally, we compare training

algorithms by plotting the episode reward mean, which represents the averaged in-

crease of GFLOPS achieved in the episode normalized to the peak performance of

the device (Figure 3.7).

We found that the APEX DQN training algorithm performs an order of magni-

tude better than other training algorithms, converging after roughly 200 steps and

67

Figure 3.7 : Average reward per epoch for RLlib algorithms during training of 4000

steps [4].

providing an average increase of 30% of the peak performance. In contrast, PPO

required more than 1000 steps to converge to an improvement of 8% of the peak,

while Impala, A3C, and DQN have not been able to achieve positive results. We

trained APEX DQN for 17.5 hours with the following winning configuration: lr =

1e6, gamma = 0.95, network depth = 10, network width = 1000.

We believe that the superiority of APEX DQN lies in the capability to prioritize

the most significant experiences generated by the actors. Since all the algorithms

are implemented in RLlib, it takes only one line of change to benefit from novel

algorithms in the future. We further compare the APEX DQN solution with non-RL

approaches.

68

3.8.2 Comparison to Search Based Approaches

To evaluate the difficulty of searching the optimization space, we run a set of tra-

ditional search algorithms, including Greedy search with lookahead of 1 and 2, BFS

and DFS variants of Beam Search with widths 2 and 4, and Random Search. We

implemented each search with caching to avoid repeating evaluations of the same

states. We run each search on a test dataset of 440 benchmarks, setting the time

limit to 60 seconds. To compare traditional searches to policy generated from the RL

approach, we plot the search time and achieved performance of the generated code of

25 random benchmarks from the test set in Figure 3.8.

Figure 3.8 : Achieved performance (higher is better) and search time (lower is

better) of randomly selected 25 test benchmarks given 60 seconds for search. The

”Original” refers to LoopNest, which was used as a back compiler for greedy, beam,

random searches, and the LoopTune method [4].

In 88% test benchmarks, the APEX DQN policy network outperforms the best

traditional searches by 1.8x on average in less than a second, which is an order of

69

Figure 3.9 : Speedup distribution for searches from Figure 3.8 normalized with Loop-

Nest results [4].

magnitude less time. To better understand the characteristics of each search, we

present the speedup distribution in Figure 3.9.

Increasing lookahead to 2 improves Greedy search’s performance. Beam2BFS and

Beam2DFS achieve poor results despite exploring the entire search subtree, which

implies that performant schedules include non-performant actions. Increasing the

width to 4 significantly boosts performance, outperforming Greedy2. The success of

Random Search further emphasizes that the optimization space is non-linear. Finally,

the RL policy network significantly outperforms all search methods by optimizing for

long-range rewards up to 10 steps ahead, avoiding local minimum.

70

3.8.3 Analysis of the loop schedule optimization space

Next, we visualize the performance and search speed of search algorithms and the

RL approach for each step (Figure 3.10). The upper figure shows the reward signal

in GFLOPS for the best-found schedule, while the lower figure shows how long it

takes to choose an action for the given step. For the Depth-First search and Random

Search, actions are not decided until the end of the search graph construction and

appear flat on the plot.

Greedy1 stops at the local minimum after two steps. Greedy2 expands the graph

to depth 6, avoiding a one-step local minimum and achieving better performance but

still exploring only a small number of states.

Figure 3.10 : Performance and time needed for expanding a search graph in each

step [4].

71

Beam2DFS expands the graph in-depth, updating each layer during graph con-

struction, keeping the time curve relatively flat. BeamBFS, on the other hand, builds

the search space layer by layer, completing lower layers first. The fact that Beam2DFS

and Beam2BFS finished before the deadline (60s) means that they constructed the

whole search graph of spawn 2. Neither of the two searches found a performant solu-

tion indicating that all performant schedules consist of at least one action, which is

best two actions.

Beam4DFS and Beam4BFS terminated with a deadline, meaning they only par-

tially constructed their spawn search graph for spawn 4. Beam4DFS’s search graph

includes solutions with long sequences of up to 10 steps, while Beam4BFS completely

explored all solutions with five steps. In both cases, the best solutions contain long

sequences of actions with non-monotonically increasing performance, which enables

these searches to see further than Greedy searches.

The Random Search uses all time to expand the search graph from root to depth

ten without following any metric and evaluating each state in the graph. This way,

Random Search can uniformly explore optimization space, including sequences of

non-monotonic actions.

RL policy network outperforms all previous algorithms by learning optimization

patterns that maximize future rewards, speeding up the execution by 3.2x on average

compared to the original LoopNest implementation. It tolerates long sequences of

non-performant actions, being worse than all other searches from the 4th to the 7th

step to reach a performant state at the 8th step. Additionally, RL policy network

search time grows linearly in the length of an action sequence, which enables us to use

the policy network on more complex problems that require a larger number of steps.

These capabilities are paramount for autotuning general compilers such as LLVM.

72

3.8.4 Comparison to Numpy, TVM, MetaSchedule, and AutoTVM

Next, we show performance profiles [256] for compilation and execution of generated

code on the test dataset (440 examples) and compare it to a popular hand-tuned

library for tensor operations – Numpy∗, tensor compiler – TVM (base version and

optimized version with blocking, permutation, and vectorization) and widely used

autotuners – autoTVM and MetaSchedule (Figure 3.11).

LoopTune outperforms all other approaches in 67% of test cases and achieves at

least 90% of the best performance in 92% of test cases. On average, LoopTune beats

base TVM by 43x, optimized TVM by 9.7x, MetaSchedule by 2.8x, and AutoTVM by

1.08x while being 3% slower than Numpy. Unlike Numpy, LoopTune doesn’t require

hand-tuning, which reduces development and maintenance costs.

Figure 3.11 : Compile time and Execution ratio of test benchmarks. For Figure b),

test cases were normalized with the best method sorted from best to worst on the

y-axis [4].

∗Numpy uses state-of-the-art OpenBlas implementation of BLAS.

73

Moreover, LoopTune makes real-time autotuning practical, generating code in just

1 second, while autoTVM and MetaSchedule require 33 and 62 seconds on average.

This is particularly important for applications that require downloading and tuning

in real-time from web-based repositories. An example can be tuning image/video

filters for social media apps and video games for mobile or VR devices.

We used official documentation from TVM [257] to implement matrix multipli-

cation for the examples from the test set. This implementation of TVM includes

blocking, loop permutation, and vectorization optimizations, the same set of opti-

mizations we use for LoopTune. We enable the ”llvm -mcpu=core-avx2” option for

TVM, MetaSchedule, and AutoTVM to get the best results for our architecture. For

MetaSchedule, we used stochastic sampling, tiling, reordering, and unrolling, while

for AutoTVM, we used XGBTuner, evaluating 64 possible schedules for both.

Evaluating more than 64 schedules would require more time, making it pro-

hibitively long for our use case – autotuning in seconds. For the same reason, we

don’t include in our evaluation popular cost-model-based frameworks such as An-

sor [228], Value Learning [229], and TenSet [258], and FlexTensor [259] since they

have similar or longer search time.

3.9 Related Work

Tensor specific libraries. Tensor-based mathematical notation was first used by

APL [260]. Similar to APL, modern frameworks such as NumPy [261], Matlab’s

Tensor Toolbox [262], Intel MKL [263], PyTorch [70] and Tensorflow [71] provide

an intuitive interface for manipulating tensors, performing customized operations,

and executing machine learning algorithms. Although these libraries often vectorize

tensor computation, they hardly find the most performant order and sizes of the loop

74

for custom hardware.

Besides machine learning, tensor computations are used for quantum chemistry

simulations. Libraries such as Tensor Contraction Engine [216], LibTensor [264], and

Cyclops Tensor [265] provide general and sometimes domain-specific tensor compu-

tations. They often use distributed algorithms and tensor blocking.

Search-based compilers. Rather than relying on one-size-fits-all solutions from

expert-written libraries, projects ATLAS [106] and FFTW [266] empirically optimize

BLAS and FFT routines given custom hardware. PetaBricks [108] chooses the most

appropriate computation algorithm for the given platform and tunes its parameter

using iterative methods. OpenTuner [267] provides an ensemble of method-agnostic

search techniques for program autotuning. Although these methods can be highly

effective, autotuning requires significant search times for each program, which can be

prohibitively expensive. LoopTune takes only a second to tune tensor computations.

Graph-based compilers. nGraph [150] passes its graph internal representation

to a transformer and generates optimized code for the selected backend. XLA [151] au-

tomatically replaces subgraphs from Tensorflow with optimized binaries. Glow [268]

applies domain-specific optimization at a high level, memory-related optimizations at

instruction-based intermediate representation, and hardware-specific optimization at

the lowest level. MLIR [269] provides extensible compiler infrastructure that aims

to unify domain-specific optimizers, providing multiple representations and layers of

optimization. Rather than using a complex representation, LoopTune encodes graph-

based representation to simple vectors with relevant features to describe memory

access patterns. This enables fast inference with a simple multi-layer perceptron.

Scheduling-based compilers. Halide [205] is the first influential work to pro-

pose the separation of computation and schedule for optimizing image processing

75

and tensor computations. It uses a declarative language to specify tensor computa-

tions and a separate language for scheduling its execution. Like LoopTune, Halide’s

scheduling language includes operations such as splitting and reordering, with the ad-

dition of vectorizing, unrolling, and parallelizing loops. TVM [206] extends Halide’s

compute/schedule concept with hardware intrinsics and defines new optimizations

such as tensorization and latency hiding. AutoTVM [270] extends the TVM cost

model and adds a template-guided search framework. FlexTensor [259] search di-

rectly schedule primitives on the finner-graned level than templates. In contrast to

these approaches, LoopTune defines the action space with a policy model in mind,

eliminating parametrized actions that are hard to learn [249].

Polyhederal based compilers. To represent tensor computation polyhedral

optimizers Polly [225] and others [271] [272] use linear programming and affine trans-

formations to optimize loops static control-flow. Tensor comprehensions [273] uses

Halide’s intermediate representation to represent computation, polyhedral represen-

tation to represent loops, and just-in-time compilation for GPU.

Cost-model based compilers. To speed up the evaluation of a computation,

popular frameworks such as Ansor [228], Value Learning [229], and TenSet [258] learn

a cost model to evaluate performance and use decision trees, evolutionary search,

and Monte-Carlo tree search to identify the best one. Although the performance

cost model reduces evaluation time, converging to the optimal state in highly non-

convex action spaces is challenging. Additionally, the inference with the cost model

and basic greedy search requires actions sequence len * number of possible actions

inferences, while the policy network requires only actions sequence len inferences,

which is precisely the case for LoopTune.

Policy-model based compilers. Neurovectorizer [159] uses deep RL to improve

76

the vectorization of CPU loops by tuning vectorization width and interleaving count.

Chameleon [160] uses a policy network to guide an adaptive sampling algorithm with

domain knowledge to search configuration space. MLGO [274] uses Policy gradient

and Evolution strategies to optimize binary size by inlining functions. PolyGym [209]

explores loop schedules combining polyhedral representation with RL and provides

infrastructure for the user to apply different RL algorithms utilizing their represen-

tation. In contrast to these approaches, LoopTune employs a novel graph-based

representation, action space, and methodology for optimizing loop nests.

3.10 Discussion

LoopStack is a novel, extremely efficient code generator tailored to machine learning

based approaches for optimizing machine learning workloads. It has orders of magni-

tude faster compilation and performs better than hand-tuned libraries. Besides this,

LoopStack can replace the cost models in some ML-based autotuners by providing

performance measurements.

LoopStack optimizes tensor contractions by providing the ultra-fast, lightweight

domain-specific code generator LoopNest and using reinforcement learning to find

performant loop schedules with LoopTune. LoopNest implements limited numbers of

HPC optimizations, following the order of computation the user requested. This is

crucial for ML-based tuners, as hidden functionality in traditional compilers makes

learning problems extremely complex. LoopTune uses deep RL to train a policy

network that reorders, and tiles loop nests. To map this problem to reinforcement

learning, LoopTune introduces a unique action space, graph-based state representa-

tion, and reward signal.

Using RLlib’s APEX DQN algorithm, LoopTune speeds up the original LoopNest

77

implementation by 3.2x, given one second on a suite of test problems. In contrast,

the best traditional search algorithm achieved 1.8x, given 60 seconds. LoopTune

achieves an order of magnitude better results than the optimized implementation of

TVM, which includes blocking, loop permutation, and vectorization. Additionally,

LoopTune outperforms MetaSchedule and AutoTVM by 2.8x and 1.08x on average,

generating code again in 1 second, while MetaSchedule and AutoTVM require 33

seconds and 62 seconds, respectively. This makes real-time auto-tuning possible.

Finally, LoopTune consistently performs at the same level as the expert-optimized

library Numpy, significantly reducing development efforts. This finding further sup-

ports the belief that deep reinforcement learning techniques will play an essential role

in the next generation of compilers.

3.10.1 Constant Loop Bounds

One of LoopTune’s limitations is that the loop nest shape needs to be known at com-

pile time. For most ML computations, forward and backward propagation are defined

as chains of matrix multiplications together with element-wise activation functions.

These operations are fixed in size, which is defined by design.

At the time, there is no support for symbolic ranges of the loop, which means

that one loop end cannot depend on the previous loop iterator. In principle, we could

approximate triangular memory access patterns, but such an approximation would

be complex to derive in a general case.

3.10.2 Computation Size

Another limitation is the size of the computation workload. The training time of

the policy network is proportional to the execution time of the loop nest since we

78

evaluate performance explicitly. This is not the problem for small kernels, while for

larger kernels, it might be necessary to use a cost model during training. The cost

model would take our vectorized graph-based representation and predict performance

in GFLOPS of a given loop nest. Once the cost model is trained, the reward signal

for each loop nest will be derived in constant time.

3.10.3 New Hardware Support

LoopTune only supports single-core CPUs with vector-level parallelism. To support

thread-level parallelism and other architectures, such as GPUs or FPGAs, we need

to add their support to our backend, LoopNest, and retrain the policy model with

LoopTune. A newly trained policy network will create a loop schedule that utilizes

special backend features, such as vector parallelism. This is achieved through the

reward signal, which implicitly depends on these features.

Support for a new backend could be added much faster than developing an op-

timized library. For example, extending LoopNest to support Apple’s M1 chip took

less than ten engineering days in fewer than 1,000 lines of code [275]. After this, we

would need to train the policy model with LoopTune, which takes less than one day.

79

Chapter 4

Large Language Models for Compiler Optimization

4.1 Introduction

There is increasing interest in large language models (LLMs) for software engineering

domains such as code generation [168, 169, 174, 175, 276–280], code translation [181,

281], and code testing [177,178,180]. Models such as Code LLaMa [169], Copilot [282],

and ChatGPT [170] have a good statistical understanding of code and suggest likely

completions for unfinished code, making them helpful in editing and creating soft-

ware. However, it appears that they have not been explicitly trained to optimize

code. ChatGPT, for instance, will make minor tweaks to a program, such as tagging

variables to be stored as registers, and will even attempt more substantial optimiza-

tions, such as vectorization. However, it quickly gets confused and makes mistakes,

frequently resulting in incorrect code.

Prior work on machine learning guided code optimization has used hand-built

features [1,161,283], all the way to graph neural networks (GNNs) [149,284]. However,

in all cases, the machine learning algorithm’s representation of the input program is

incomplete, and some information is lost along the way. For example, MLGO [161]

uses numeric features to provide hints for function inlining but cannot faithfully

reproduce the call graph or control flow, etc. PrograML [149] forms graphs of the

80

program to pass to a GNN, but it excludes values for constants and some information

that prevents reproducing instructions with fidelity.

In this work, we ask: Can large language models learn to optimize code? LLMs

can accept source programs as is, with a complete, lossless representation. Using text

as the input and output representation for a machine learning optimizer has desirable

properties: text is a universal, portable, and accessible interface, and unlike prior

approaches, it is not specialized to any particular task.

We began our investigation into the code-optimizing power of LLMs by repli-

cating the optimizing transformations of LLVM [12] compiler. LLVM’s optimizer is

extremely complex and contains thousands of rules, algorithms, and heuristics in over

1M lines of C++ code. We expected that while LLMs have shown significant progress

in natural language translation and code generation tasks, they would be incapable

of emulating such a complex system. Understanding and applying compiler opti-

mizations require multiple levels of reasoning, arithmetic computation capabilities,

and using complex data structure and graph algorithms, which are capabilities LLMs

have been shown to lack [285,286].

We thought this line of research would reveal LLMs’ obvious failings and motivate

future clever ideas to overcome those failings. We were entirely taken by surprise to

find that, in many cases, a sufficiently trained LLM can not only predict the best op-

timizations to apply to an input code but can also directly perform the optimizations

without resorting to a compiler at all!

Our approach is simple. We begin with a 7B-parameter LLM architecture, taken

from LLaMa 2 [287], and initialize it from scratch. We then train the model on million

examples of LLVM assembly to predict performant optimization sequences that reduce

code size. Each example contains input LLVM assembly, the best compiler options

81

found by a long-running search, and the resulting assembly from performing those

optimizations. From these examples alone, the model learns to optimize code size

with remarkable accuracy.

Given one compilation, our approach achieves a 3.0% improvement in code size

reduction over the compiler, while a search-based approach achieves 5.0% with 2.5e9

compilations. Furthermore, the two state-of-the-art ML approaches we evaluated

caused regressions and required thousands of compilations.

We provide auxiliary experiments and code examples to further characterize the

potential and limits of LLMs for code reasoning. The model shows surprisingly strong

code reasoning abilities, generating compilable code 91% of the time and perfectly em-

ulating the output of the compiler 70% of the time. Overall, we find their effectiveness

remarkable and think that these results will be of interest to the community.

4.2 LLVM Pass Ordering with Large Language Models

In this work, we target compiler pass ordering. The pass ordering task is to select

from the set of optimizing transformation passes available in a compiler the list of

passes that will produce the best result for a particular input code. Manipulating pass

orders has been shown to have a considerable impact on both runtime performance

and code size [1, 288].

Machine learning approaches to this task have shown promising results previously

but struggle with generalizing across different programs [163]. Previous studies typi-

cally need to compile new programs thousands of times to try various configurations

and find the best-performing option, making them impractical for real-world use. We

hypothesized that a large language model with sufficient reasoning power could learn

to make good optimization decisions without needing this.

82

Most prior work on LLMs for code operates on source languages such as Python.

Instead, for the pass ordering problem, we require reasoning at the lower level of

LLVM Intermediate Representation (IR). While there exist curated datasets of source

languages for pretraining LLMs (e.g. [289–291]), compiler IRs do not make up a

significant portion of these datasets, and their ability to reason about IR is far inferior

to source languages.

We target optimizing LLVM pass orders for code size as in prior work [161, 163],

using IR instruction count as an (imperfect) proxy for binary size. This approach

is agnostic to the chosen compiler and optimization metric, and we intend to target

runtime performance in the future. For now, optimizing for code size simplifies the

collection of training data.

4.2.1 Prompt Structure

We present the model with an unoptimized LLVM-IR (such as emitted by the clang

frontend) and ask it to produce a list of optimization passes that should be applied

to it. Figure 4.1 shows the format of the input prompt and output text we use during

training.

We target LLVM 10 and use the optimization flags from opt. There are 122

optimization passes, which can be selected more than once in a single sequence. We

also include the six meta-flags (-O0, -O1, -O2, -O3, -Oz, and -Os) that may occur

only once per pass list. Pass lists can be any length, though, in our experiments, we

found typically up to 9 passes long for a combinatorial search space of around 1018.

As shown in Figure 4.1, we also include two auxiliary tasks: 1) generating the

instruction counts of the code before and after optimizations are applied and 2)

generating the output IR after optimizations are applied. We hypothesize that these

83

Figure 4.1 : Overview of our approach, showing the model input (Prompt) and out-

put (Answer) during training. The prompt contains unoptimized code. The answer

includes an optimization pass list, instruction counts, and the optimized code [6].

would enable better pass-ordering decisions by forcing a deep understanding of the

mechanics of code optimization. We verify this experimentally in Section 4.5.2.

While the model is trained to generate instruction counts and optimized IR, we

do not need those auxiliary tasks for deployment. All we need to do is generate

the pass list that we could execute by the compiler (Figure 4.2). This enables us to

keep generation costs on the order of seconds. Moreover, we sidestep the correctness

problems that plague techniques that require the model output to be trustworthy [181,

281,292,293].

84

Figure 4.2 : Overview of our approach, showing the model input (Prompt) and output

(Answer) during inference. The prompt contains unoptimized code. The answer

comprises only an optimization pass list, which we feed into the compiler, ensuring

the optimized code is correct [6].

4.2.2 LLVM-IR Normalization

We normalize the LLVM-IR that is used for training the LLM using the following

rules: we discard comments, debug metadata and attributes, and ensure consistent

whitespace by feeding the IR through a custom lexer that retains newlines but stan-

dardizes other whitespace and strips indentation. We do this to reduce the length of

the LLVM-IR to make maximum use of the limited input size of the LLM.

85

4.3 Training Methodology

We use the ubiquitous transformer architecture [69]. The transformer is an artificial

neural network that employs self-attention over a fixed-size context window.

The input text is first tokenized into words and subword units. These are embed-

ded into continuous vector representations and provided as input to the transformer’s

decoder, where self-attention mechanisms capture contextual relationships between

tokens to encourage the model to understand and process the input text’s semantic

structure.

The output text is produced by iteratively generating one token at a time. The

decoder takes the encoded input and any previously generated tokens and uses self-

attention to predict the next token in the sequence. We greedily sample during

decoding to select the most likely token sequence. This process continues until an

end-of-sequence token is generated or a predefined maximum length is reached.

4.3.1 Model Architecture

We use the same model architecture and Byte Pair Encoding (BPE) [294] tokenizer

as Llama 2 [287], but train our model from scratch. We use the smallest Llama 2

configuration: 32 attention heads, 4,096 hidden dimensions, and 32 layers for a total

of 7B parameters.

The maximum length of a (prompt, answer) pair is defined by the sequence length.

In this work, we use a sequence length of 2,048 tokens. The Llama 2 tokenizer achieves

an average of 2.02 characters per token when encoding LLVM-IR, so this provides an

approximate upper limit on the longest LLVM-IR we can train on at 2KB (since 2KB

prompt and 2KB answer ≈ 2,048 tokens).

86

4.3.2 Training Data

We assembled a large corpus of unoptimized LLVM-IR functions, summarized in Fig-

ure 4.3. We extracted the functions from publicly available handwritten C/C++ code

datasets and supplemented this with synthetic code generated by C/C++ compiler

test generators. The training corpus comprises 1,000,000 deduplicated IR functions,

totaling 373M training tokens. We operate at the level of individual IR functions

rather than entire modules to maximize the data we can fit inside a 2,048-token

sequence length.

To find the list of optimization passes that will produce the smallest instruction

count, we employ autotuning. Our autotuner combines random search and all-to-all

results broadcasting between functions, inspired by the work of Liang et. al. [284].

For each function, we run a random search for a fixed amount of time (780 seconds)

and then minimize the best pass list by iteratively removing randomly chosen passes

to see if they contribute to the instruction count. If not, they are discarded. After

performing this on each function, we aggregate the set of unique best pass lists and

broadcast them across all other functions. Thus, if a pass list works well on one

function, it is tried on all others.

In total, the autotuner compiled each training program an average of 37,424 times,

achieving a 5.8% improvement in instruction count reduction over the baseline fixed

pass ordering in the compiler provided by -Oz. For our purposes, this autotuning

serves as a gold standard for optimizing each function. While the instruction count

savings discovered by the autotuner are significant, the computational cost to reach

these wins was 9,016 CPU days. This work aims to achieve some fraction of the

performance of the autotuner using a predictive model that does not require running

the compiler thousands of times.

87

Figure 4.3 : Training and test data. Each LLVM-IR function is autotuned to create a

(Prompt, Answer) pair. The n tokens column shows the number of tokens when the

prompt is encoded using the Llama 2 tokenizer. -Oz instruction count is instruction

count after applying -Oz flag [6].

4.3.3 Training Configuration

Starting from randomly initialized weights, we trained the model for 30,000 steps on 64

V100s for a total training time of 620 GPU days. We use the AdamW optimizer [295]

with β1 and β2 values of 0.9 and 0.95. We use a cosine learning rate schedule with

1,000 warm-up steps, a peak learning rate of 1e−5, and a final learning rate of 1/10th

of the peak. We used a batch size of 256; each batch contains 524,288 tokens for

88

15.7B training tokens. The full 30,000 training steps are 7.7 epochs (iterations over

the training corpus).

During training, we evaluated the model on a holdout validation set of 1,000

unseen IRs that were processed similarly to the training set. We evaluate every 250

steps.

4.3.4 Training Results

Figure 4.4 (a) shows the performance during training when evaluated on a holdout

validation set of 1,000 unseen LLVM-IR functions. The model achieved peak valida-

tion performance at 10.9B training tokens.

At peak performance, the code optimized using model-generated pass sequences

contains 4.4% fewer instructions than when optimized using the compiler’s built-in

pass ordering (-Oz). The autotuner achieves a greater instruction count reduction

of 5.6%, but this required 27 million compilations of the validation set. The model

makes its predictions without invoking the compiler once.

Figure 4.4 (b) shows the error of predicted input and output instruction counts.

Prediction of instruction counts for unoptimized code rapidly approaches near-perfect

accuracy. Prediction of output instruction count proves more challenging, reaching a

Mean Average Percentage Error (MAPE) of 5.9%.

Figure 4.4 (c) evaluates the quality of the generated code using three metrics.

The BLEU [296] score shows the similarity between the model-generated code and a

reference ground-truth code produced by the compiler using the generated pass list.

Code compiles is the frequency model-generated code compiles without error. Exact

match tracks the frequency that the model-generated code is a character-by-character

match of the compiler-generated code when optimized using the generated pass list.

89

Figure 4.4 : Performance on holdout validation set during training. We evaluate

performance every 250 training steps (131M train tokens). Parity with -Oz is reached

at 393M tokens and peak performance at 10.9B tokens [6].

90

At peak performance, the model generates code that compiles without errors

90.5% of the time. A BLEU score of 0.952 shows that the model-optimized code

closely approximates that of the compiler, and the exact match frequency is 70%.

For comparison, a baseline that copies the unoptimized code to the output would

achieve a BLEU score of 0.531 and an exact match frequency of 0%, demonstrating

that significant manipulation of the input code is required to achieve such high scores.

By the end of training, performance on the validation set had plateaued. We use

the best-performing checkpoint and switch to a 100× larger-scale evaluation.

4.4 Experiments

In this section, we evaluate the model’s ability to generate pass lists for unseen code

and correctly perform optimization.

4.4.1 Comparison to State-of-the-Art

In this experiment, we perform a large-scale evaluation on 100,000 test examples to

compare the LLM’s ability to predict pass lists to baselines.

Datasets

We aggregate a broad suite of benchmark datasets for evaluation, summarized in

Figure 4.3 (b). We deduplicate and exclude IR functions identical to those we

used as training inputs. Our test data comprises code from a variety of domains,

including coding competitions (AI-SOCO [297], POJ-104 [298]), compiler test case

generators (CSmith [188], YARPGen [299]), and miscellaneous publicly available code

(ExeBench [300], Transcoder [181]).

91

Baselines

We compare our approach to three baselines: AutoPhase [301], Coreset-NVP [284],

and the autotuner.

AutoPhase [301] is a reinforcement learning approach in which an agent is trained

using Proximal Policy Optimization [252] to select the sequence of optimization

passes that will maximize cumulative instruction count savings over a fixed-length

episode. At each step, the program being optimized is presented to the agent as

a 56-dimensional vector of instruction counts and other properties. We replicate

the environment of [301] but use the implementation and expanded training regime

from [163] in which the agent is trained for 100,000 episodes. We train the agent on

the same data as our language model (Figure 4.3) and evaluate agent performance

periodically during training on a holdout validation set. As in prior work, we use an

action space and episode length of 45.

Coreset-NVP [284] is a technique that combines iterative search with a learned cost

model. First, a greedy search is run on 17,500 benchmarks to determine a Core set of

best pass lists. Then a Neural Value Prediction (NVP) is trained on the results of this

search, using ProGraML [149] graphs processed by a Graph Convolutional Network as

program representation. At inference, Coreset-NVP predicts the normalized reward

and tries the first few pass sequences with the highest normalized reward. The total

number of passes it is allowed to try for each benchmark is 45, following prior work.

We use author-provided model weights to perform inference on our test set.

Finally, we compare it to the autotuner we used to generate training data. We

autotuned the test dataset in the same manner as the training data, described in

Section 4.3.2.

92

Figure 4.5 : Performance of different approaches for pass ordering on a test set of

unseen LLVM-IR functions from Figure 4.3. All metrics are w.r.t. -Oz. Instructions

saved is summed over functions improved and instructions regressed is summed over

functions regressed. Overall improvement is the sum total instruction count savings

w.r.t -Oz. The autotuner performs best but requires 2.5B additional compilations

(949 CPU days). Our approach achieves 60% of the gains of the autotuner without

invoking the compiler once [6].

Results

Figure 4.5 summarizes the results. Our approach outperforms -Oz, AutoPhase, and

Coreset-NVP across all datasets. AutoPhase and Coreset-NVP can identify pass lists

that outperform -Oz but negatively impact instruction count negatively due to many

regressions. We propose a simple “-Oz backup” extension to overcome this: if a model

predicts a pass list other than -Oz, we also run -Oz and select the best of the two

options.

This prevents regressions w.r.t. -Oz but increases the number of additional compi-

lations by the number of times the model predicts a pass list other than -Oz. Figure

4.6 shows the results of the techniques when evaluated in this manner. While this

does not help the models find further improvements, the lack of regressions means

93

Figure 4.6 : Extending the models in Figure 4.5 with “-Oz backup”. If a model

predicts a pass list other than -Oz, it also evaluates -Oz and selects the best. This

prevents regressions w.r.t -Oz at the expense of additional compilations [6].

that AutoPhase and Coreset-NVP improve over -Oz, though still less than the LLM

with or without the -Oz backup.

4.4.2 Evaluation of Generated Pass Lists

Figure 4.7 shows the frequency with which passes are selected by the autotuner and

our model from the previous experiment. The distribution of passes selected by

the model broadly tracks the autotuner. -Oz is the most frequently optimal pass.

Excluding -Oz, model-generated pass lists have an average length of 3.4 (max 10),

and autotuner pass lists have an average length of 3.1 (max 9). Additionally, the

model generated 105 pass lists that are not present in the training data.

Figure 4.8 breaks down the improvement of each approach to pass ordering by

benchmark dataset. The most significant improvements over -Oz is found in the POJ-

104 and Transcoder datasets, which both aggregate large amounts of handwritten

code, while the programs generated by YARPGen (used for testing compilers) have

the fewest opportunities for improving over -Oz.

We discovered a strong correlation between the input program size and the poten-

94

(a) Frequency of a pass in the generated pass list for each test program.

(b) Length of generated pass list for each test program.

Figure 4.7 : Frequency of individual passes and the length of generated pass list for

each of the 100,000 test programs. -Oz is the starting point for the autotuner and is

the dominant result, being the best-found result for 93.2% of autotuned test programs

and appearing in an additional 0.6% of pass lists as part of a longer sequence. The

model-generated pass distribution tracks the autotuner but slightly overpredicts -Oz

(94.3%) and includes nine passes that the autotuner used on the training set but not

the test set. Results are ordered by decreasing autotuner frequency [6].

95

AI
-S

OC
O

Ex
eB

en
ch

PO
J-1

04

Tr
an

sc
od

er

CS
m

ith

YA
RP

Ge
n

To
ta

l

-10%

-5%

0%

5%

10%

15%

Im
pr

ov
em

en
t o

ve
r -

Oz

AutoPhase
Coreset-NVP
Autotuner
Our Approach

Figure 4.8 : The improvement over -Oz by dataset [6].

tial performance improvement over -Oz found by both the autotuner and the model.

Figure 4.9 plots this trend, showing that larger programs have more opportunities to

improve over -Oz.

This is an encouraging result since our training set of 1M IR functions consists of

only 15% of the data available for training. Once the efficiency of LLMs with large

context sizes increases, we can train models with functions larger than 1024 tokens

or even entire programs and achieve significantly more significant improvements.

4.4.3 Evaluation of Generated Code

In this section, we evaluate the quality of model-generated code. To do this, we ran

the auxiliary training task of generating optimized code for all 100k functions in the

test set. Note that this is not required to generate the pass lists evaluated in the

96

10 20 30 40 50 60
Unoptimized instruction count

-10%

0%

10%

20%

30%

Im
pr

ov
em

en
t o

ve
r -

Oz
AutoPhase
Coreset-NVP
Autotuner
Our Approach

Figure 4.9 : The improvement over -Oz compared to the input size. Larger codes

optimize more [6].

Figure 4.10 : Distribution of data given maximum program size in LLaMa2 token

count. Our training dataset consists of programs smaller than 1024 tokens — only

15% of available data.

97

Figure 4.11 : Compiler errors of model-optimized code on 100,000 unseen inputs [6].

previous section. We have made minor edits to the code samples in this section for

brevity, such as omitting superfluous statements and shortening identifier names.

In 90.3% of cases, the model-generated optimized IR compiles, and in 68.4% of

cases, the output IR matches character-for-character the ground truth generated by

the compiler. We categorize different classes of errors for the 9.7% of cases where the

generated IR does not compile in Figure 4.11. Figure 4.12 provides code examples.

Most challenging to evaluate are the 21.9% of cases where the model-optimized

code compiles but is not a character-by-character match with the compiler output.

There are two challenges: the first is that text precision metrics such as BLEU

score are sensitive to differences in the code, such as variable names and commu-

tative operand order, that do not affect the code’s behavior. Tools such as LLVM-

Canon [302] can help here but come with their own set of drawbacks. However, in

many cases, it is unclear whether the behavior of two IRs is the same, so the second

challenge we face is evaluating semantic equivalence. Since not all datasets we use

98

Figure 4.12 : Compiler errors in model-optimized code [6].

for testing provide driver scripts and input datasets for their code, we cannot use

execution-based equivalence checks such as differential testing [303].

Figure 4.13 shows an example of model-generated code with incorrect program

semantics. Here, the lower 8 bits of a 64-bit literal are truncated and returned.

The compiler performs this calculation and substitutes the correct value. The model

recognizes that the expression can be calculated at compile time but fails to compute

the proper value. Mathematical reasoning is a known weakness of LLMs [286].

Sometimes, the model generates correctly optimized code but fails to produce the

pass list needed to achieve it. Figure 4.14 shows one such example. The model-

optimized code and instruction count predictions match the performance of the au-

totuner, but the model omitted the -mem2reg pass needed to achieve this code. The

model-generated pass list yields 10 instructions instead of 7.

99

Figure 4.13 : An example where the model generates compilable code but fails to

compute the correct answer for a numeric expression. Producing the correct result

for this expression requires non-trivial mathematical reasoning [6].

Figure 4.14 : An example where the model generates correctly optimized code but

fails to produce the pass list needed to produce the desired code [6].

100

Figure 4.15 : An example of an unsafe optimization by the model. The 33-instruction

input program (not shown) contains a loop that is not always safe to optimize away.

For example, when y = INT MAX the loop never terminates [6].

Another class of error is when the model makes unsafe optimizations by failing

to analyze the input code (Figure 4.15). In this example, the model eliminates the

while loop that doesn’t change the return value. This is wrong since this loop can

become infinite if i ∗ i overflows 32 bits and becomes a negative number. For this to

happen, y must be set to an exceptionally high value.

We observe an interesting connection between the quality of pass lists and the

corresponding optimized code, shown in Figure 4.16. When the model produces a

poor-performing pass list, the quality of the generated code is lower. This indicates

that the model ”doesn’t know” what the optimized code should look like and is less

likely to produce a performant optimization pass list. Interestingly, programs that

101

Equal to -Oz Better than -Oz Worse than -Oz
0.0

0.2

0.4

0.6

0.8

1.0
BLEU
Code compiles
Optimized instcount error

Figure 4.16 : Model-optimized code quality as a function of the performance of the

generated pass list. Code quality is lower when the pass list performs worse than

-Oz. The model-optimized code resembles the ground truth less (lower BLEU score),

the code is less likely to compile, and the model struggles to estimate the instruction

count (higher error). Error bars show 95% confidence intervals [6].

perform better than the -Oz code metric also drop slightly. This is expected since

the model is expected to generate optimized code after the sequence of optimization

passes, rather than just -Oz, for which it has many examples in the training dataset.

4.5 Additional Experiments

In the previous section, we evaluated the performance of an LLM trained to opti-

mize LLVM-IR for code size. This section provides a qualitative analysis of LLMs

when generating directly optimized LLVM IR for code size. All models use the same

architecture and parameters as in Section 4.3.

102

4.5.1 Ablation of Dataset Size

We ablate the contribution of dataset size by training two additional models and

varying the amount of the training data from 50% (500k examples) down to 25% (250k

examples) by random dropout. Figure 4.17 shows progress during the training of the

models. For dataset sizes of 50% and 25%, the models begin to overfit the training

set after around 8B training tokens. Figure 4.18 shows the peak performance of each

configuration. With 50% and 25% of the training data, downstream performance falls

by 21% and 24%, respectively.

Figure 4.17 : Ablating the impact of training data size and the auxiliary co-training

task of generating optimized code (denoted No Aux). Data size is measured as a

number of training examples. The graph shows performance on a holdout validation

set during training [6].

103

Figure 4.18 : Ablation experiments. We evaluate the impact of varying training data

size while training the model to optimized code size. We train each model for 30k

steps and report the performance of the best model checkpoint on a holdout validation

set of 1,000 unseen IR functions [6].

4.5.2 Ablation of Code Optimization Task

We train the model to generate not just a pass list but also the optimized code

resulting from this pass list. One may expect this to degrade model performance –

not only must it learn to predict good pass lists, but also how to produce correctly

optimized code, a more difficult task. In fact, we believe this to be crucial to model

performance. By forcing LLMs to learn the semantics of LLVM-IR, we enable them

to make better optimization decisions.

To ablate this, we trained a model to generate only pass lists without the cor-

responding optimized code. We kept the data mix and all other parameters the

same. Figure 4.17 and Figure 4.18 show that without training the model to generate

optimized code, downstream performance falls by 16%.

104

4.5.3 Evaluation of Single Pass Translation

In previous sections, we trained LLMs to select optimization passes to produce the

best-optimized code. In this section, we evaluate the ability of LLMs to emulate

the different optimizations themselves. For this experiment, the model input is an

unoptimized IR and the name of an optimization pass to apply, the output is the IR

after applying this pass.

Dataset

We generate a new dataset for this task using 60 optimization passes and apply them

randomly to the programs from Figure 4.3. We augment the dataset of unoptimized

code with partially optimized code by running a sequence of randomly selected passes

on unoptimized IRs before the desired target pass. We collect 10,000 unique (prompt,

answer) examples for each of the 60 passes for a total of 600k examples.

Model

We trained a new model from scratch on this pass translation dataset. It reached

peak performance after 11B training tokens (74 GPU days).

Results

Figure 4.19 summarizes model performance. The average BLEU score overall passes

is 0.846, with exact character-by-character matches 73.7% of the time and compilable

code 82.3% of the time. We also plot the frequency with which each optimization

appears in a model-generated pass list that improved or regressed performance over

-Oz in Figure 4.5. We find no correlation between code quality metrics and its

frequency in generated pass lists.

105

Figure 4.19 : Training a model to predict single optimization passes. The right subplot

evaluates the quality of the generated code for the corresponding pass (ordered by

BLEU score). The left subplot shows the frequency that the corresponding pass

contributed to an improvement or regression of instruction count over -Oz [6].

106

As can be seen, many passes are learned near-perfectly while others prove more

challenging. Some passes that perform poorly hint at simple improvements to the

representation, while others result from more profound limitations of the model’s

reasoning. Figure 4.20 (a) shows an example from the -name-anon-globals pass,

which is a simple utility pass that renames anonymous global variables using a hash

of the module name. Since we do not provide the module name in the prompt, the

LLM is forced to hallucinate random values.

Figure 4.20 (b) shows an example from the -instcombine pass. This is a complex

pass that is implemented in over 4.5k lines of C++ code in LLVM. We see that the

model correctly identifies the instructions to combine but makes an error in data flow

analysis and substitutes an incorrect value. This important optimization frequently

occurs in pass lists that outperform -Oz. We will explore an active learning approach

in which more examples are provided for complex and challenging passes.

Finally, we present an example of correct model optimization in Figure 4.21. The

example combines several non-trivial code manipulations: register allocation, control

flow graph simplification, and instruction combining. We visualize the control and

data flow graphs to help interpret the model’s changes. Even on the scale of these

small IR functions, the sophisticated grasp of LLVM-IR semantics demonstrated by

the LLM is remarkable. The model has learned to perform these optimizations entirely

from examples without access to the compiler implementation.

4.6 Related Work

Compiler pass ordering for performance has been exploited for decades [91,288,304].

Over the years, several approaches have been using machine learning [1,114,283,284,

301, 305]. The application of machine learning in compilers is not limited to pass

107

(a) Failure due to incomplete information. The pass -name-anon-globals

uses the module name to compute a hash. Lacking this, the model hal-

lucinates a random hash.

(b) Failed data-flow analysis. The model correctly removes redundant

instructions but substitutes the wrong value for a variable. The model-

optimized code compiles and has a high BLEU score but is incorrect.

Figure 4.20 : Example failures from the pass translation experiment. We combine

the model input (red), ground-truth (blue), and model-generated (green) texts into

a single unified diff for brevity. Black text is common to all three [6].

108

Figure 4.21 : The example of correct generation of optimized IR. The model performed

several complex optimizations, including control-flow simplification and replacing if-

then-else code blocks with instructions [6].

109

order and has been applied to many other problems [159, 161, 306–308]. No one has

applied LLMs to the problem of pass ordering; we are the first to do so.

Neural machine translation is an emerging field that uses language models to

transform code from one language to another. Prior work includes compiling C to

assembly [293], assembly to C [292,309], and source-to-source transpilation [281]. In

these works, code correctness cannot be guaranteed, while we use code generation

solely as an auxiliary learning task – correctness is supplied by the compiler.

Although language models are used for coding tasks, they are not often used for

compilers. Gallagher et al. train a RoBERTA architecture on LLVM-IR for code

weakness identification [182] and Transcoder-IR [181] uses LLVM-IR as a pivot point

for source-to-source translation. Neither use LLMs for optimization as we do.

Many language models have been trained on source code, including CodeBERT [171],

GraphCodeBERT [172], and CodeT5 [173], which are trained to perform multiple

tasks, including code search, code summarization, and documentation generation.

LLMs trained on source code have also been used for program fuzzing [177–179], test

generation [180], and automated program repair [183,184,310]. Many practical appli-

cations have been explored for language models; however, this is the first work where

an LLM is explicitly used to optimize code.

Most LLMs are trained partly on code [276,277,287,311]. Some LLMs are trained

similarly to general models but especially target programming languages and can be

used for code completion, such as Codex [280], which powers Copilot [282]. The intro-

duction of fill-in-the-middle capabilities is beneficial for real-world code completion

use cases and has become common in recent code models such as InCoder [278], San-

taCoder [175], StarCoder [174], and Code Llama [169]. Code Llama was also trained

to follow instructions, generate code, and explain its functionalities.

110

While the multi-terabyte training corpora for these models contain some assembly,

we believe that focused exploration of the value of LLMs in the domain of compilers

will be of value to the community.

4.7 Discussion

We present the first steps towards LLMs for code optimization. We construct a model

that can predict good optimization strategies for unseen LLVM-IR. LLMs can near-

perfectly emulate many compiler optimizations and outperform prior approaches,

but limitations exist. First, LLM operates on fixed input sizes that enable only small

program fragments. The model has limited ability to perform arithmetic reasoning

and predict the outcome of some optimizations. Finally, the speed of the optimization

is limited to the speed of token generation.

4.7.1 Context Window

The main limitation of LLMs is the limited sequence length of inputs (context win-

dow). In this work, we target 2k-token context windows and split IRs into individual

functions to maximize the amount of code we can fit into the context window. This

is undesirable for several reasons. First, it limits the context available to the model

when making optimization decisions; second, it prevents intra-function optimization;

third, we cannot optimize code that does not fit within the context window. Figure 4.9

suggests larger programs have more interesting optimization opportunities.

Researchers are adopting ever-increasing context windows [312], but finite context

windows remain a common concern with LLMs. As new techniques for handling long

sequences continue to evolve, we plan to incorporate them and apply them to code

optimization, e.g. Code Llama’s variant of positional interpolation [313] which is based

111

on Rotary Position Embeddings period scaling [169] or recent length extrapolation

techniques [314].

4.7.2 Math Reasoning and Logic

Compilers perform lots of arithmetic. Whenever possible, expressions are evaluated

at compile time to minimize work at runtime and to expose further opportunities for

optimization. We see examples of LLMs struggling with this type of reasoning, e.g.,

failed constant folding (Figure 4.13) and failed data-flow analysis (Figure 4.20).

We think the chain-of-thought approach [315], in which models are taught to

decompose complex reasoning problems into incremental steps, will prove fruitful.

We took the first step in this direction by breaking optimizations into individual

passes in Section 4.5.3. We also plan to focus training on a curriculum of arithmetic

and logic and train LLMs that use tools to compute intermediate results [316,317].

4.7.3 Inference Speed

Compilers are fast. It takes two orders of magnitude more time for the model to

generate a pass list than for the compiler to execute. While this is much faster than

the autotuner it is trained on, it remains an overhead that may prove prohibitive

for some applications. That is to say nothing of the difference in compute resources

needed to evaluate compiler heuristics vs. a 7B-parameter LLM running on multiple

GPUs.

In addition to aggressive batching and quantization [318], significant inference

speedups can be achieved by specializing the vocabulary to a use case. For example,

we can reduce entire subsequences of passes to single vocabulary elements using Byte

Pair Encoding so that fewer tokens need to be generated at inference time.

112

Chapter 5

Feedback-directed Large Language Models for

Compiler Optimization

5.1 Introduction

As shown in the previous chapter, LLMs showed advanced reasoning capabilities in

learning and applying the best optimization sequences for a given LLVM IR. Our

model achieves 3.01% better results than -Oz on 100k examples from test set in code

size reduction. There is, however, still room for improvement since the model still

didn’t match the autotuner performance of 5.03%.

We want to extend this approach and increase performance on example models

that couldn’t match the autotuner’s performance. To achieve this, we give a model a

second chance by constructing feedback from the model’s generation with the help of

a compiler and asking the model to try again. This way, the model should get insight

into its generation and hopefully improve. Additionally, we want to add stochastic

sampling, enabling the model to generate multiple possible solutions and take the

best one. By generating many potential solutions and being able to refine them by

fixing generation-given feedback, we hope to boost performance closer to autotuner.

113

5.2 Motivation and Background

The performance of LLMs improves significantly when they are allowed to generate

a series of reasoning steps to get to the final solution [315]. This behavior is partic-

ularly true for complex problems such as arithmetic, symbolic reasoning, and code

generation. Additionally, increasing randomness and generating multiple solutions

leads to superior performance. On the other hand, with increasing randomness, the

model often generates incoherent solutions that impede their ability to reason cor-

rectly. Being able to get feedback on its generation and fix its errors could enable

LLM to take one step further toward coming to a favorable solution.

We found that it is possible to derive a correlation between metrics available

at inference time and model performance (Figure 5.1). There is a negative correla-

tion between tgt inst cnt error(C) (the difference between predicted target instruction

count and instruction count of IR got by compiling predicted passes) and improve-

ment over autotuner. In other words, a smaller error in predicting the target instruc-

tion count means that the model is more likely to find a good solution. This is also

the case if tgt IR BLEU(C) (generated IR compared to compiled IR BLEU score) is

high and the number of generated flags is large. Additionally, as one might expect, a

positive correlation exists between the length of the generated optimization list and

model performance.

To understand the relation between tgt inst cnt error(C), tgt IR BLEU(C), and

performance, we plot their distributions in Figure 5.2. When the model correctly pre-

dicts the target instruction count, the performance of the autotuner is also matched.

This means that when we detect this case in the inference, we can stop prompting

and accept generated optimization passes. Similarly, we can stop prompting if the

compiled and generated IR are equal, which results in tgt IR BLEU(C) being 1.

114

Figure 5.1 : Correlation heatmap of metrics available at inference time. Input and

output prompts are described with prefixes (src, tgt). Instruction counts are abbre-

viated with inst count. (G) stands for generated, while (C) stands for compiled.

Figure 5.2 : Distribution of absolute error in predicting optimized IR instruction

count and BLEU score with respect to performance compared to autotuner [7].

115

5.3 Feedback-directed LLMs

To use metrics correlated to performance, we propose a three-step process [7] shown

in Figure 5.3. In the first step, the model starts from the prompt that contains

only unoptimized IR and generates an optimization pass list, instruction count, and

optimized IR itself. In the second step, we derive available metrics from generation

with the help of the compiler and construct a feedback. The purpose of the feedback is

to quantify the consistency of generation and to point out where the internal model of

the LLM diverges from the actual compiled IR. In the third step, we provide feedback

to the model and give it a second chance.

To construct feedback, we evaluate if the generated pass list is valid. Then, we

compile source IR with the generated pass list, producing compiled IR. Next, we count

the number of instructions of compiled IR and evaluate if the predicted source IR and

optimized IR are correct. Since optimized IR could be derived from both generated

IR and compiled IR, we save both metrics in the feedback. Additionally, we validate

if the predicted IR is compilable, save the error message, if any, and calculate the

Bleu score between the generated IR and compiled IR.

We compare three kinds of feedback (Figure 5.4). Short Feedback contains pre-

dictions and answers for metrics and error messages. Long Feedback contains all

derivable metrics and extends Short Feedback by Compiled IR. Since Short and Long

Feedback both contain the metrics from generated IR, they require an entire genera-

tion to be constructed. Fast Feedback avoids this by providing only metrics calculated

from the pass list and instruction counts. This enables the model to stop generation

early, terminating in just a few seconds, which is about 10x faster than other kinds

of feedback.

When it comes to hardware efficiency, the process of appending feedback data is

116

Figure 5.3 : Feedback-directed model. First, we ask LLM to optimize the instruction

count of the given IR. LLM generates the best optimization passes, instruction counts

for starting and generated IR and generated IR itself. Next, we compile the generated

pass list and create feedback by checking if the generated pass list is valid, evaluating

instruction counts, examining if the generated IR contains compilation errors, and

calculating the BLEU score between the generated IR and the compiled IR. If some

feedback parameters are problematic, we extend the original prompt with the gener-

ation, compiled code, and feedback and ask it to try again [7].

117

Figure 5.4 : Prompt structure of Feedback models. Short Feedback is the smallest in

size and extends the prompt with just calculated metrics and error messages. Long

Feedback contains the most information including compiled IR. Fast Feedback is the

fastest to generate since it doesn’t need the generation of IR to be calculated [7].

118

highly efficient. When the model generates the last output token, the GPU memory

already contains prompt and generation. Feedback would just be written in already

allocated GPU memory, and the model would be ready for evaluation a second time.

Structuring the feedback task after the prompt and generation has one additional

benefit. It reinforces learning of optimization tasks without feedback as well. This

happens because the probability of one token depends only on the previous tokens.

Since we are appending a feedback task after the optimization task, it will not influ-

ence it. This way, we can use the same model for both optimization without feedback

and with feedback.

Combining the Feedback approach with sampling can be an effective way of tuning

applications. By increasing the temperature in LLM generation, the model creates

multiple optimization strategies. Since this process is stochastic, there is a higher

chance of some errors in the generation. Learning the model and how to correct itself

could enable it to develop the idea further by fixing itself until it comes to a promising

solution.

5.4 Training Methodology

We train a 7B-parameter model with LLaMa 2 architecture [287] for each of the

Feedback forms. As the starting point for training, we use the best checkpoint from

Chapter 4, which only predicts the best optimization passes for the given IR. We use

the same Byte Pair Encoding [294] tokenizer and model architecture that includes 32

attention heads, 4,096 hidden dimensions, and 32 layers for a total of 7B parameters.

119

5.4.1 Datasets

We construct a training data set for each of the feedback forms. We evaluate 1M

training examples for each form and construct the new dataset that includes the

feedback. We use 100k test examples from Figure 4.3 to find the best model. Ad-

ditionally, we extract half of the examples from the test set to serve as a validation

set.

The prompt will have the structure described in Figure 5.4 for all feedback forms.

For expected generation, we keep the same format as the original work with an

addition of the first line that indicates if the model is sure in its generation. Model

outputs ”I am sure!” if the model correctly predicted the target instruction count,

which is a strong indication that the model matched the performance of the autotuner.

Otherwise, the model outputs ”Let me try again.”.

5.4.2 Training

We trained all our models for 20,000 steps, with 64 A100 for about 60 GPU days.

We use the AdamW optimizer [295] with β1 and β2 values of 0.9 and 0.95. We use a

cosine learning rate schedule with 1,000 warm-up steps, a peak learning rate of 1e−5,

and a final learning rate of 1/10th of the peak.

We used a batch size of 256, and each batch contains 786,432 tokens for Short and

Fast Feedback and 1M tokens for Long Feedback, for a total of 16B and 21B tokens,

respectively. The full training of 20,000 steps made 5.12 iterations over the training

corpus.

120

5.5 Experiments

In the evaluation, we answer the following questions:

• How do the feedback models compare to the original in Task Optimize and Task

Feedback?

• How does the best feedback model perform when sampling is enabled?

• Can we use the feedback model to generate feedback and repair the current

solution iteratively?

We found that the feedback model keeps the ability to optimize IR even without

feedback. When allowed to apply two inferences, it can outperform the original model

by 0.53%, closing the gap to the autotuner by 10%. On the other hand, when the

sampling is enabled, we show that the original model achieves up to 98% of the

autotuner improvement over -Oz given 100 samples. We evaluate three sampling

strategies for the feedback model and show that they all fail to match the sampling

of the original model. Finally, we compare the performance of the iterative feedback

model with the original model given the same amount of computation per sample.

We show that the original model outperforms the feedback model with two or more

samples and a temperature higher than 0.4.

5.5.1 How does the feedback model compare to the original in Task Op-

timize and Task Feedback?

We compare all three feedback models with the original on the Task Optimize and

Task Feedback (Figure 5.5). In Task Optimize, the input prompt consists only of the

input IR, while in Task Feedback, each model will append the input prompt with

121

the feedback they got from the previous generation in the format defined in Figure

5.4. Additionally, we show performance on: 1) all examples; 2) examples where the

autotuner found a non-Oz optimization pass; 3) examples where the original model

was worse than the autotuner, and 4) examples where the original model mispredicted

the instruction count. Furthermore, we show the performance of the model combined

with -Oz.

All of the feedback models perform similarly on average to the original on Task

Optimize even without being trained on that Task explicitly in the feedback fine-

tuning. Moreover, the feedback models even improved the performance for examples

where the original model performed worse than the autotuner by 0.6% for Fast Feed-

back. This is because we add extra information to the input, enabling the model to

discriminate complex examples and learn them more easily.

In Figure 5.5, we feed the output from Task Optimize to each feedback model and

apply Task Feedback while keeping the results from Task Optimize for the original

model. All the feedback models improve the performance of the original model by

0.19% with Short Feedback, 0.4% with Long Feedback, and 0.53% for Fast Feedback.

Most of the improvement comes from the examples where the original model per-

formed worse than the autotuner and the examples where the model mispredicted

the generated instruction count. Here, the Fast Feedback model outperforms the

original model by 1.48% and 1.07%, respectively.

Interestingly, the Fast Feedback model performs better than Long Feedback de-

spite using a subset of information in the input prompt. In this case, adding generated

IR to the input prompt adds noise and confuses the model. Since the Fast Feedback

model doesn’t need to generate IR to create feedback, we can iterate much faster. We

use the Fast Feedback model for further evaluations for the following experiments.

122

Figure 5.5 : Comparison of the original and feedback models in reducing instruction

count. The upper figure shows the performance on Task Optimize. The lower figure

shows the performance on Task Feedback, where each model uses their format for

feedback. Horizontally, we show the performance on all examples: examples where

the autotuner’s best pass is non-Oz, the original model was worse than the autotuner,

and the original model mispredicted target instruction count. All the models keep the

ability to perform Task Optimize while improving the performance when feedback is

provided [7].

123

5.5.2 How does the feedback model achieve when sampling is enabled?

The performance of the LLMs could be further improved with sampling. Sampling is

a process of generating new answers on the same prompt by choosing the next token

from the probability distribution of tokens rather than just selecting the best one.

This way, the model can generate solutions that could match the prompt better than

the original answer.

The common sampling technique is Temperature Sampling, which idea originates

from Boltzman machines [319], but is recently applied to text generation [320–322].

In Temperature Sampling, we divide each next token probability with the constant T,

which makes distribution sharper if T is closer to 0 or more uniform as we increase T.

The parameter T is usually in the range (0, 2), where we refer to T=0 as the original

(greedy) sampling, while T closer to 2 often produces incoherent results. We conduct

a comprehensive sampling analysis in the Chapter 6.

In our work, we use Nucleus Sampling [9], the most common sampling technique

for text generation. Nucleus Sampling avoids text degeneration by truncating the

unreliable tail of the probability distribution, sampling from the dynamic nucleus of

tokens containing the vast majority of the probability mass. As suggested in the

original paper [9], we sample only tokens whose cumulative probability mass exceeds

top-p=0.95.

Original model sampling

We evaluate Nucleus Sampling on randomly selected 50k unseen test examples (Figure

5.6). We chose the best result from the given sample number for each example and

averaged it across 50k examples. Additionally, we sweep the temperature parameter

in the range (0, 1.6) with the step of 0.2.

124

Figure 5.6 : Sampling diagrams of the original model for 50k unseen randomly selected

test examples [7].

For temperature 0, we use greedy decoding, which always chooses the token with

the highest probability, resulting in a performance of 2.87% above -Oz independently

of the number of samples. The performance increases with the temperature increase,

especially for runs with more than 1 sample, while it decreases for one available

sample. This is expected since, with multiple samples, the model has more room to

make errors while discovering potentially better optimization passes.

Given 100 samples, our model achieves a remarkable 4.86% improvement over -Oz

on a temperature of 1.4. This is 98% of the improvement that the autotuner achieves

compared to -Oz. With ten samples, the original model achieves about 86% of the

autotuner, which is a significant win compared to 57% of the temperature 0. This

means the model learns to construct reasonable solutions, which are reachable by

smarter sampling techniques.

125

Feedback model sampling

Can we improve the sampling performance of the original model with the feedback

mechanism? We explore the idea behind feedback models in sampling. Since the

feedback models improve generation performance on temperature 0, can we apply the

same technique and improve each potentially wrong generation during sampling?

To check this hypothesis, we evaluate the Fast Feedback model in 3 additional

experiments:

1. Task Optimize with Nucleus Sampling with given temperature T.

2. Task Feedback with Nucleus Sampling with T=0, starting from (1).

3. Task Feedback with Nucleus Sampling with given temperature, starting from

(1) with T=0.

In the first experiment, we sample the Fast Feedback model in direct generation

of optimization flags (Task Optimize), from which we generate feedback data for the

following two experiments. In the second experiment, we set the temperature to 0 and

asked the model to correct the previously generated flags on a given temperature. This

way, the model gives it the best guess to correct previous generations. In contrast,

in the third experiment, the model starts from the best guess for Task Optimize and

provides up to 100 samples to fix it.

In Figure 5.7, we can see the results. As expected, the sampling curves of the

Fast Feedback resemble the original model but perform slightly worse since it was not

trained on Task Optimize. Interestingly, the Fast Feedback model achieves the peak

performances on higher temperatures for each number of samples, reaching 4.65%

over -Oz on temperature 1.6 with 100 samples.

126

Figure 5.7 : Sampling diagrams of the feedback models. T=X means that temperature

could be any value [7].

127

In the second experiment (Figure 5.7(b)), the Fast Feedback model achieves up

to 4.74% improvement over -Oz on the temperature 1.6 on Task Feedback, increasing

the performance of previous Task Optimize. It outperforms the original model for up

to 3 samples but doesn’t keep the advantage for 10 or more samples. Similarly, it out-

performs the original model for temperatures 0 and 0.2 but not higher temperatures.

This is because we don’t train the Fast Feedback model to correct the generation of

Task Optimize when the temperature is on, which causes the generations to become

significantly different.

In the third experiment (Figure 5.7(c)), the Fast Feedback model starts from

generations with temperature 0, but increasing the temperature for Task Feedback

fails to provide better results. Similar to the previous example, the lower number

of samples (1, 2, 3) and temperature in the range [0, 2] achieves higher performance

than the original model, but not for 10 or more samples.

From these results, we can conclude that sampling the Fast Feedback model could

slightly outperform the original model for samples smaller than 3, but not more.

Additionally, training the Fast Feedback model on generations with non-zero tem-

peratures could increase performance. Unfortunately, such an approach introduces

significant complexity to the training process for non-significant improvement.

5.5.3 Can we use the feedback model to generate feedback and repair the

current solution iteratively?

In this section, we evaluate the capability of the fast feedback model to iterate based

on previous solutions and compare it to the sampling of the original model with the

same number of inferences. First, the Fast Feedback model applies Task Optimize,

which generates feedback. Then, the model applies Task Feedback iteratively by

128

Figure 5.8 : Comparison of the iterative approach (model) versus the sampling of

the original model with the same amount of computation. In each step, the Fast

Feedback model generates feedback for the next step, applying Task Optimize in the

first step and Task Feedback afterward. Once the model outputs ”I am sure!” we

stop. We allow the same number of generations for the original model [7].

using the feedback of the previous Task and generates the feedback for the next step

for a total of 5 steps. After every generation, we check if the Fast Feedback model

generated ”I am sure!” and use that as the final result. For the original model,

we applied Task Optimize and sampled each example as many times as we made

steps with the feedback model. We use temperatures in the range [0,1] and show the

cumulative performance of each approach in Figure 5.8.

The Fast Feedback model performs similarly to the original model with tempera-

ture 0 on Task Optimize while making the most of performance improvements in the

second step (Task Feedback) and slowly increasing by iterating on Task Feedback,

129

achieving performance similar to the original model with temperature 0.4. The orig-

inal model with temperature 1 starts with the lowest performance but outperforms

all other approaches from step 2. This result demonstrates that sampling is more

powerful than iteration for our problem and should be used instead.

5.6 Related Work

Large language models are able to generate code and documentation [169, 174, 175,

276–279], translate code between programming languages [181, 281, 293], write unit-

tests [177,178,180], as well as detect and fix bugs [310,323].

The availability of various open-source code datasets [300, 324] and the accessi-

bility of platforms like GitHub have enabled models such as CodeLlama [169], Chat-

GPT [170], and Codex [280] to elevate their coding capabilities. However, it’s im-

portant to note that these models were not explicitly designed for code optimization.

For instance, ChatGPT can perform minor optimizations, like tagging variables for

storage in registers, and even attempt more substantial improvements, such as vector-

ization. Nevertheless, it encounters confusion and makes errors, leading to incorrect

code outcomes.

On the other hand, models such as AlphaCode [168] generate a performant solu-

tion by optimizing code on the source level. AlphaCode is fine-tuned on competitive

programming problems from the Codeforces platform, using 715.1 GB of code data

from GitHub for pretraining. Furthermore, it generates a large corpus of potential

solutions from which it chooses the 10 best solutions by implementing sophisticated

clustering and filtering mechanisms. Similar to Alphacode, we demonstrate the power

of sampling while targeting compiler-level optimizations instead of the optimizations

on the source code.

130

When it comes to fundamental LLM improvements, Wei et al. [315] showed that

significant improvement of the LLM can be obtained by splitting answers in step by

step manner for models with more than 10B parameters. Brown et al. showed that a

few-shot prompting [75] based on extending prompt with similar (question, answer)

pairs additionally increases the model’s performance. Yang et al. [325] extend this

approach further by iteratively adding generated solutions and their evaluations of

the original prompt, together with a few-shot prompting. Our approach provides

more informative feedback based on inference time evaluation of model generations,

including validation of generated pass list, evaluation of predicted instruction counts,

and optimized IR.

Finally, the problem of compiler pass ordering has been explored for many decades [91,

288,304]. In recent years, machine learning has become an avenue for this optimization

task, with various approaches proposed [1,105,283,284,301,305]. It’s noteworthy that

the implementation of machine learning in compiler technology extends beyond just

optimizing pass order and includes a wide range of other challenges [159,161,306–308].

We extend these efforts further by pioneering the use of large language models in com-

piler optimization.

5.7 Discussion

Sampling has exceptional potential to improve the original model’s performance.

With simple Temperature Sampling, the model reaches 98% of the autotuner’s perfor-

mance with 100 samples. To improve this performance further, we provide compiler

feedback to the original model and give it another chance. We explore three formats

of feedback with various degrees of information. All feedback forms outperform the

original model on temperature 0 by 0.11%, 0.4%, and 0.53%.

131

Next, we explore the sampling properties of the Fast Feedback and compare it to

the original model. We evaluated the feedback model on task: 1) Generate LLVM flags

given temperature sampling, 2) Generate LLVM flags using temperature sampling and

use feedback with temperature 0, and 3) Generate LLVM flags with temperature 0

and use feedback with temperature sampling. In all these cases, the Fast Feedback

model failed to improve the performance of the original model when there were more

than 10 samples. This indicates that either the Fast Feedback model doesn’t know

how to deal with generations at higher temperatures or always generates the same

output.

To mitigate this problem, we could generate a dataset by sampling the original

model and train the Fast Feedback model on these data. Additionally, our model

contains only 7B parameters, and scaling it up might increase the performance fur-

ther. Models larger than 10B parameters perform better when using chain-of-thought

prompting [315], which provides additional information similar to our approach.

Another approach is to discard the feedback component and implement a smarter

sampling heuristic for the original model. We can use beam search and similar tech-

niques when sampling the tokens. AlphaCode [168], for example, generates many

possible solutions and then uses clustering and filtering techniques to select the best

answers. Developing methods in this area could be more generally applicable in the

LLM community.

The next chapter describes a novel Priority Sampling method that increases sam-

pling efficiency and provides better generation control.

132

Chapter 6

Sampling of Large Language Models for Compiler

Optimization

6.1 Introduction

The performance of LLMs could be improved by generating an ensemble of diverse

solutions from which we evaluate and choose the best. This is usually done by increas-

ing the entropy of generation [326,327], or expanding the search tree [10,11,328,329].

Sampling also enables us to better understand an LLM’s capacity for a given task

and the range of possible solutions. This is particularly important in code genera-

tion, where generating a variety of responses can be valuable in exploring different

implementation ideas.

Current sampling approaches have few major problems. Temperature-based sam-

pling [326, 327] requires a significant amount of computation to find the optimal

temperature. The optimal temperature may also depend on the context, which re-

quires additional evaluations. Once we set the temperature, sampling often produces

many duplicates and semantically meaningless answers, wasting available samples.

To motivate our approach, we show the average number of unique samples gener-

ated by Nucleus Sampling compared to Priority Sampling (Figure 6.1). On 50K test

examples, Nucleus Sampling generates less than five unique examples on average for

100 samples, while Priority Sampling generates 100. This is because Nucleus Sampling

133

Figure 6.1 : Average number of unique samples generated from 50K unseen test

programs. Priority sampling produces a higher ratio of unique samples than nucleus

sampling [8]

either chooses the high probability generation repeatedly or generates non-coherent

output, which we don’t count as a meaningful unique sample.

We present Priority Sampling [8], a deterministic sampling technique that guaran-

tees unique samples for which the model has the highest confidence. Furthermore, we

guarantee that produced samples will adhere to the regular expression (inspired by

Willard [330]), which is particularly important for code generation and optimization.

We evaluate Priority Sampling on optimizing LLVM optimization passes [6] in

which the model is trained to predict optimizations found by the long-running au-

totuner. Priority Sampling outperforms Nucleus Sampling [326] for any number of

134

samples, reaches 91% of the autotuner improvement over -Oz in just five samples,

and even outperforms the autotuner used to generate labels for finetuning the origi-

nal model with 30 samples (Figure 6.3).

6.2 Priority Sampling of Large Language Models

At a high level, Priority Sampling works by augmenting a search tree and determining

which unexplored path to expand next based on the model’s highest confidence. Our

idea is simple. Always focus the search towards the most interesting direction based

on previous samples rather than determining this in advance. Additionally, avoid

sample repetition, which decreases sampling power.

We sketch the algorithm for Priority Sampling in Figure 6.2. The model is equiv-

alent to Greedy Decoding for the first sample but with an important addition. Each

generation saves top K alternative tokens with their predecessors in the priority queue

with the token’s probability as a metric. Once a sample is generated, we can quickly

find what token to expand with the next sample by poping with the token with the

highest probability from the queue and expanding the search tree from there. Since we

add unexpanded tokens to the queue only once, each new sample will be unique. Ad-

ditionally, we need the same number of inferences as the number of tokens generated

in the search tree.

Going into more detail, the Algorithm 1 defines priority queue and token mask,

which will determine the best tokens prefix-sequence to expand and steer token gen-

eration to that point. Since we know the number of samples we generate, we can fix

the length of priority queue and set token mask length to the generation length of

the model.

With two for loops, we iterate through sample space and perform token generation

135

Figure 6.2 : Priority Sampling tree expansion. Each node contains a token generated

by inference and the probabilities of the next potential tokens. In the first sample,

we create a branch from the root to the end-of-sequence (EOS) token and put all

valid potential tokens with their probabilities in the priority queue. For every next

step, branch the token with the highest probability and generate that branch until

the EOS [8].

136

Algorithm 1 Priority Sampling

1: priority queue← queue()

2: token mask ← list()

3: sample tokens← list()

4: for sample : range(samples) do

5: generated tokens = list()

6: for pos : range(generation length) do

7: if pos < len(token mask) then

8: next token← token mask[pos]

9: else

10: logits← inference(generated tokens)

11: best tokens← choose best tokens(logits, generated tokens, regex)

12: next probability, next token← best tokens[0]

13: for probability, token : best tokens[1:] do

14: priority queue.push(probability, generated tokens + [token])

15: end for

16: end if

17: generated tokens.append(next token)

18: end for

19: sample tokens.append(generated tokens)

20: token mask ← priority queue.pop()

21: end for

22: return sample tokens

137

for each sample while keeping track of the previously generated tokens for a given

sample. To determine the next token, we either follow the sequence from token mask

until we reach the branching point or expand the search tree by applying the inference.

With inference, we get the probability distribution of tokens, from which we choose

K tokens with the highest probabilities. An important addition here is that we

exclude all tokens that don’t satisfy the regular expression we define when combined

with previous tokens. This can be done in constant time by using a finite state

machine as described in the previous work [330]. This technique enables us to steer

generation only toward legal format, which is particularly useful for code generation.

Once we select the best tokens, we expand the search tree directly with the best

token while putting the remaining tokens in the queue. We repeat this until we finalize

the generation of the current sample. After all potential tokens for expansions are

saved to the queue, we update token mask with the token prefix with the highest

probability. Finally, we use the token prefix to locate the node that needs to be

expanded and start the generation of the new sample from there.

Priority Sampling has the algorithmic complexity of O(T*(inference + Klog(V))),

where T is the number of generated tokens, K is the number of top-k samples we

consider, and V is vocabulary size. In practice, this is similar to Nucleus Sampling

since the cost of inference is much higher than Klog(V), and Priority Sampling reuses

inferences for the samples with the same prefix.

Additionally, the memory requirements are significantly reduced by keeping the

size of the priority queue equal to the number of samples we generate. This way,

we avoid saving the probabilities of all tokens in the vocabulary for each node while

ensuring that there will be enough candidates for branching the search tree.

138

6.3 Experiments

We evaluate the Priority Sampling technique on generating efficient LLVM optimiza-

tion passes with LLM that reduces code size [6]. First, we train the 7B parameter

model with Llama2 architecture for 30,000 steps on 64 V100s for a total training time

of 620 GPU days. The training dataset consists of 1M LLVM IR labeled with the

LLVM optimization sequence found by autotuner. The autotuner spends 13 minutes

exploring 37,424 optimization passes on average to generate a label for each example.

Finally, we autotune 50K unseen test examples for 13 minutes for a total improvement

of 4.98% over -Oz.

To evaluate the effectiveness of Priority Sampling, we compare it to Random

Sampling, Greedy Decoding, and Nucleus Sampling for 100 steps. Random Sampling

evaluates 100 random optimization passes and calculates the best optimization pass

so far for each sample. Greedy Decoding generates an optimization sequence by

deterministically predicting the next token with the highest probability. For the

Nucleus Sampling, we evaluate the model for temperature in the range {0.2, 0.4, 0.6,

0.8, 1, 1.2, 1.4, 1.6}. For our problem and model architecture, temperature 1.2 is the

most effective under 20 samples, while temperature 1.4 is the most effective for more

than 20 samples.

We present the comparisons in Figure 6.3. Priority Sampling outperforms Ran-

dom Sampling, Greedy Decoding, and Nucleus Sampling for any number of samples

in reducing code size. Moreover, Priority Sampling is much more sample efficient

than Nucleus Sampling achieving even the performance of the autotuner in 30 steps.

Increasing the performance of the original model from 2.87% to over 5% with just

30 samples means that a significant part of knowledge is accessible by expanding the

search tree wisely.

139

Figure 6.3 : Average improvement in code size over -Oz optimization on 50k unseen

test examples. Autotuner spends 760s optimizing each example and sets the labels for

LLM fine-tuning [6]. Greedy Decoding, Nucleus Sampling, and Priority Sampling use

the fine-tuned model. Random Sampling selects 100 random flags for each sample.

Priority Sampling outperforms all previous methods, including autotuner, which was

used for labeling [8].

140

This is an astonishing result since the model was trained to mimic the autotuner’s

behavior, not to outperform it. Since the autotuner operates on the complex set

of LLVM optimizations tied to the input program’s structure, our model seems to

generalize from these patterns and combines them in a novel way on the unseen

programs, resulting in higher performance.

6.4 Additional Experiments

For ablation (Table 6.1), we show how the performance of Priority Sampling changes if

1) we don’t use regular expression filtering, 2) use the geometric mean of probabilities

of previously generated tokens as the metric for the priority queue, and 3) constrain

the expansion for each node to 3 and 5.

If we don’t enforce regular expression generation, the generated sampling tree will

have higher probabilities, but generated samples could be invalid. To address this, we

apply an additional pass that removes all invalid optimization passes and defaults to

-Oz if all passes are illegal. This technique is beneficial for 1 and 100 samples while

enforcing regular expressions outperforms slightly non-constrained versions otherwise.

Next, we evaluate using the geometric mean as the metric for the priority queue.

This could be an interesting idea since the probability of the next token is highly

biased with few previous tokens. For example, prefix -mem2 will put high probability

to token reg, independently if -mem2reg is a good optimization to apply. On the other

hand, calculating the geometric mean of previous token probabilities doubles memory

requirements since we need to store probability with each generated token. We found

that this doesn’t significantly influence the final performance.

Finally, we evaluate the method’s performance when the branching size constrains.

This idea focuses on increasing sample diversity and avoiding the generation of many

141

Improvement over -Oz [%]

Method Sample 1 Sample 3 Sample 5 Sample 10 Sample 30 Sample 100

Random Sampling -12.56% 1.15% 1.60% 1.97% 2.36% 2.76%

Temp0 2.87% - - - - -

Temp1.2 1.80% 3.74% 4.05% 4.31% 4.61% 4.80%

Temp1.4 -1.19% 3.52% 3.99% 4.28% 4.63% 4.86%

Temp1.6 -10.06% 0.75% 2.65% 3.81% 4.46% 4.82%

Autotuner 4.98%

Priority Sampling (PS) 2.69% 4.23% 4.55% 4.82% 5.00% 5.09%

PS (no regex) 3.17% 4.18% 4.41% 4.64% 4.93% 5.12%

PS (max branch 3) 2.62% 4.22% 4.56% 4.83% 4.99% 5.09%

PS (max branch 5) 2.62% 4.22% 4.61% 4.85% 4.99% 5.09%

PS geometric (PSG) 2.68% 4.17% 4.45% 4.75% 4.96% 5.07%

PSG (max branch 3) 2.62% 4.17% 4.52% 4.77% 4.98% 5.11%

PSG (max branch 5) 2.62% 4.17% 4.56% 4.80% 4.98% 5.12%

Table 6.1 : Experimental results and ablation experiments of Priority Sampling.

Evaluation includes the improvement of Random Sampling, Nucleus Sampling, and

Autotuner over the compiler (default -Oz optimization). Ablation evaluates the use of

the regular expression, constraining branching factor, and using the geometric mean

as the priority metric in Priority Sampling [8].

142

nodes with the same prefixes. For a given prefix, the first few samples should be

enough to finalize the optimization strategy, while we should use other samples to

explore the alternatives. Our results suggest that there is some benefit of constraining

the branching factor to 5 for our problem, but not significant.

6.5 Related Work

By default, LLMs auto-regressively use greedy decoding to choose the token with the

highest probability. Since the inference is deterministic, it generates the same answer

for the given prompt. This kind of generation could be inconvenient for open-ended

tasks, where multiple ways exist to come to a favorable solution. Even more, the lack

of diversity limits the quality of the generation compared to sampling methods since

alternative generations often perform better than greedy decoding.

So, how do we sample LLM? In sampling methods, we choose the next token from

the probability distribution of all possible tokens instead of the token with the highest

probability. In most cases (when the input is similar to the training distribution),

the probability mass is concentrated around a few tokens, while the majority of the

tokens have a probability close to 0. Many sampling methods focus on reshaping this

distribution, preferring certain kinds of tokens or making distribution more uniform.

The simplest way to control the shape of the next token probabilities is to use

Temperature Sampling [321,331], which introduces parameter T in the range (0, inf),

which divides each probability from distribution. For T < 1, the values of probabilities

will increase, effectively sharpening the distribution while otherwise becoming more

uniform. Finding the right temperature depends on the application and presents a

tradeoff between conservative answers that could be repetitive or liberal answers that

could become incomprehension.

143

Top-k Sampling narrows the choice of the next word to the top k most probable

tokens [321, 331, 332]. This approach often results in grammatically correct text but

fails to maintain fluency for longer answers. Even though language models do gen-

erally assign high scores to well-formed text, the highest scores for longer texts are

often generic, repetitive, and awkward [9]. Additionally, top k choices often include

tokens with a probability close to 0, which could result in an incoherent token. This

problem is even more pronounced in Temperature Sampling.

To solve this problem, Nucleus Sampling [9] eliminates the low-probability tail

of the distribution and preserves diversity by sampling from tokens whose sum is

larger than top-p=0.95 probability. Rather than relying on fixed top-k choices or

using a temperature parameter to control the shape of the distribution, Nucleus

Sampling suppresses the unreliable tail of a distribution, expanding and contracting

the candidate pool dynamically. As a result, this approach generates more natural

human-written text with less repetition.

It is interesting to note that both human-written language and Nucleus Sampling

have higher Perplexity (that corresponds to entropy of generation) than Top-k Sam-

pling while being more coherent (Figure 6.4). The authors of [9] explain this by an

intrinsic property of the human language to optimize against stating the obvious,

discouraging long sequences of predictable words. This property doesn’t necessarily

hold for LLMs when generating assembly code rather than human language.

Another big problem with sampling is diversity. For each previous model, there

is no way to guarantee that each sample is going to be different from the previous.

This is particularly a problem with shorter generations, such as a sequence of LLVM

flags, in which many samples are the same as greedy decoding.

The first work that addressed this problem is Diverse Beam Search (DBS) [333].

144

Figure 6.4 : Figure from [9]. The probability assigned to tokens generated by Beam

Search and humans, given the same context. Note the increased variance that charac-

terizes human text, in contrast with the endless repetition of text generated by Beam

Search.

Similar to Beam Search, DBS decodes diverse lists by dividing the beam budget

into groups and enforcing diversity between groups of beams. To enforce diversity,

DBS optimizes for both sequence likelihood under the model and a dissimilarity term

based on Diverse M-Best MAP inference [334]. With this approach, DBS creates

more diversity than traditional beam search without extra computation in inference.

Instead of shaping reward function based on diversity, Stochastic Beam Search

145

(SBS) [329] uses Gumbel-Max trick [335] to sample top-k tokens with the high-

est probabilities in differentiable manner. The Gumbel-Max Trick involves adding

Gumbel-distributed noise to the logits (likelihood scores), after which we apply the

softmax and select top-k candidates. By applying this procedure recursively for each

next token, SBS returns a fixed-size batch of samples. However, SBS comes with

a few caveats. It generates only fixed-size batches of unique samples and requires

1 + (L− 1)k of inferences for the sequence of length L and k samples.

Although beam search and Gumbel top-k sampling guarantee a different output for

each beam element, they are not easy to parallelize. Arithmetic Sampling [10] solves

this problem as shown in Figure 6.5. First, it samples N numbers from a uniform

distribution in the range (0, 1). Next, for each new token, concatenates probability

distribution in the range (0, 1) intervals and selects the next tokens whose intervals

contain any of the N samples. Finally, it normalizes samples for the next interval

and repeats this process until the end-of-sequence token is reached. This method

guarantees a diverse set of high-probability samples that are easy to parallelize. Un-

fortunately, this method may include duplicates.

To solve these problems, Shi et al. propose a Unique Randomizer [11] that incre-

mentally samples sequence models while guaranteeing the uniqueness of each sample.

Unique Randomizer constructs a Trie to keep track of probability distribution mass

for each token (Figure 6.6). For the first node, the probability distribution mass is

set to 1 and is divided recursively on children’s nodes proportional to the probability

distribution of children’s tokens. Once the last token in the sample is generated, it

will be added as a leaf node in the trie, while its probability mass will be subtracted

from each of its predecessors and itself. This will cause its probability mass to be-

come 0. When the next sample is generated, the next token will be sampled from

146

Figure 6.5 : Figure from [10]. Each sample takes a number from the range (0,1) and

iteratively finds the next tokens whose probability captures that interval.

the probability distribution of the children nodes, which means that nodes with a

probability mass of 0 will never be selected again.

The advantage of this approach is that it draws new unique samples incrementally,

enabling us to sample until a timeout is reached, after we get enough coverage, or until

we reach enough diversity in samples. Additionally, a Unique Randomizer requires

the same number of inferences as non-leaf nodes in the trie, saving the inference for

all samples that have the same prefix.

In our work, we further extend the idea of a Unique Randomizer with few key

differences. First, we implicitly construct the trie of generated tokens but keep the

probabilities of each token in the priority queue with its prefix. This enables us to

quickly and deterministically find the node in the trie that needs to be expanded next

147

Figure 6.6 : Figure from [11]. Left: trie after the partial generation of a sample [1,

0], immediately before making the third random choice. Right: updated trie after P

terminates for the full trace [1, 0, 1].

while avoiding inferences for the prefix tokens. Additionally, we constrain children’s

expansion to nodes that, together with prefixes, satisfy the regular expression we

provide, keeping the size of the trie minimal.

Expanding only nodes with the highest probabilities results in lower Perplexity

even than Top-k Sampling, which might not be the right way to process human lan-

guage but might be beneficial for generating code and learning how to manipulate

other discrete optimization tasks. This is because, unlike human language program-

ming languages, assembly and other tasks with discrete grammar didn’t evolve to

increase information but to remove ambiguity, for which Perplexity should be the

right measure for evaluation.

6.6 Discussion

Priority Sampling is a simple inference technique that provides a deterministic and

controllable way of generating unique samples for which LLM is the most confident.

148

Priority Sampling is much more sample-efficient than widely used Nucleus Sampling,

reaching 91% of the autotuner improvement over -Oz and even outperforming auto-

tuner for more than 30 samples.

This is a surprising result since the model was trained to replicate the performance

of the autotuner and not to surpass it. This finding supports the argument that

LLMs store a large amount of knowledge accessible with the clever expansion of the

search tree. Additionally, Priority Sampling includes support for regular expression

generation that provides a controllable and structured exploration process.

6.6.1 Sequential Implementation

Priority Sampling, however, comes with a few limitations. The current implementa-

tion is inherently sequential. We need to construct an augmented search tree to decide

what branch needs to be expanded next. One way to parallelize Priority Sampling

would be to treat the priority queue as a task generator, from which threads take the

next branching position whenever they are idle. Second, Priority Sampling needs to

find the top N next tokens that match the regular expression, which is more time-

consuming than sampling methods such as Unique Randomizer [11] and Arithmetic

Sampling [10]. This is, however, a necessary step for generating samples in order.

149

Chapter 7

Conclusions and Future Work

Compiler optimization is essential for elevating the efficiency and performance of

software on modern processor architectures. The intricate nature of cutting-edge com-

puter architectures, ever-evolving software frameworks, and escalating computation

demands have rendered traditional manual optimization techniques more challeng-

ing and time-intensive. In response to these challenges, the integration of machine

learning (ML) became an instrumental part of the modern compilers. ML adeptly dis-

cerns intricate patterns, facilitating the automatic customization of code generation

and optimization strategies tailored to specific hardware configurations.

This thesis extends previous work and presents novel findings about machine learn-

ing based techniques for improving compiler heuristics.

First, we use reinforcement learning to optimize the domain-specific tensor com-

piler LoopNest. LoopTune trains a policy network that reorders, and tiles loop nests

and applies hardware-specific optimization using LoopNest to tailor the loop nest

to the underlying hardware. To map this problem to reinforcement learning, Loop-

Tune introduces a novel action space, graph-based state representation, and reward

signal. LoopTune achieves an order of magnitude better results than the optimized

implementation of TVM, which uses the same optimizations such as blocking, loop

permutation, and vectorization. Additionally, LoopTune outperforms MetaSchedule

and AutoTVM by 2.8x and 1.08x on average, generating code again in 1 second, while

150

MetaSchedule and AutoTVM require 33 seconds and 62 seconds, respectively. This

makes real-time auto-tuning possible.

When it comes to limitations, LoopTune supports only loop nests with constant

loop sizes. For most of the machine learning computation, this is defined by design.

Another limitation is the size of the computation workload. Since the training time

of the policy network is proportional to execution time, training on larger problems

would require training of the cost model which would predict the performance in

constant time.

LoopTune supports only the CPU backend, which could be easily extended by

writing support for novel devices in LoopNest and retraining the model with Loop-

Tune. Finally, extending the LoopTune representation with features that describe

inner-loop computation would be beneficial in optimizing compute-bound computa-

tion.

Second, we evaluate the capability of the 7B-parameter transformer model to

predict performant LLVM optimization flags and generate optimized IR itself. The

model takes an unoptimized assembly as input and outputs a list of compiler options

to optimize the program best. Crucially, during training, we ask the model to predict

instruction counts before and after optimization and the optimized code itself. These

auxiliary learning tasks significantly improve the model’s optimization performance

and depth of understanding.

Our approach achieves a 3.0% improvement in reducing instruction counts over

the compiler, outperforming two state-of-the-art baselines that require thousands

of compilations. Furthermore, the model shows surprisingly strong code reasoning

abilities, generating compilable code 91% of the time and perfectly emulating the

output of the compiler 70% of the time.

151

The main limitation of our approach is the short context size and the weak

math reasoning abilities of the model. The current context size of 2k tokens al-

lows only function-level optimizations for functions that fit in the context. Novel

research ideas such as Retrieval Augmented Generation (RAG), Rotary Position Em-

beddings(RoPE), and recent length extrapolation techniques significantly lift context

size limitations. Additionally, chain-of-thought prompting and tool-enabled LLMs

could effectively handle math tasks.

Third, we explored the idea of feedback-directed large language models that use

compiler feedback to improve their generation. After generation is finalized, we com-

pile the input with generated optimization passes and evaluate if the predicted in-

struction count is correct, generated IR is compilable, and corresponds to the compiled

code. We provide this feedback back to LLM and give it another chance to optimize

the code. We explore three formats of feedback with various degrees of information.

All feedback forms outperform the original model on temperature 0 by 0.11%, 0.4%,

and 0.53%. We further explore the sampling properties of the Fast Feedback and

compare it to the original model. The Fast Feedback model fails to improve the

performance of the original model when 10 or more samples are given. From this,

we conclude that sampling is an irreplaceable technique for getting high performance

and a promising direction to explore.

Finally, we developed a Priority Sampling simple deterministic sampling technique

that produces unique samples ordered by the model’s confidence and guarantees each

sample will satisfy the given regular expression. Each new sample expands the unex-

panded token with the highest probability in the constructed search tree. We evaluate

Priority Sampling on the task of reducing code size by selecting LLVM optimization

passes. Priority Sampling outperforms Nucleus Sampling for any number of samples,

152

boosting the performance of the original model from 2.87% to 5% improvement over

-Oz. Additionally, it outperforms the autotuner used for the generation of labels used

for the training of the original model in just 30 samples. This unexpected result sup-

ports the argument that LLMs store a large amount of knowledge accessible through

the clever expansion of the search tree.

The current implementation of Priority Sampling is inherently sequential. We need

to construct an augmented search tree to decide what branch needs to be expanded

next. One way to parallelize Priority Sampling would be to treat the priority queue

as a task generator, from which threads take the next branching position when they

are idle. Additionally, sorting the next token probabilities for each token introduces

extra overhead compared to other sampling-based approaches. This is, however, a

necessary step for generating samples in order.

Future Work

Using machine learning in compiler design holds great promise for advancing the field

and addressing complex optimization challenges.

Reinforcement Learning. With its ability to autonomously learn and adapt

based on feedback, reinforcement learning offers an avenue to optimize compiler de-

cisions dynamically. Exploring more sophisticated reinforcement learning algorithms

and incorporating them into various stages of the compilation process could lead to

more efficient and adaptive code generation. Moreover, the exploration of meta rein-

forcement learning, where compilers learn to learn from a variety of tasks, holds the

potential for creating more generalized and versatile optimization strategies. As the

field progresses, the synergy between reinforcement learning and compiler design has

potential to redefine the boundaries of code generation, fostering the development

153

of compilers that optimize for performance and exhibit a nuanced understanding of

diverse programming paradigms and architectural configurations.

Novel Code Representations. The development of novel representations, such

as graph-based structures and advanced state representations, opens new possibili-

ties for capturing intricate relationships within code. Future research may evolve to

enhance these representations to accommodate diverse programming paradigms and

languages. The synergy between reinforcement learning and innovative representa-

tions can pave the way for compilers that not only optimize for traditional perfor-

mance metrics but also consider broader aspects such as energy efficiency, security,

and specialized hardware architectures. As the field evolves, these advancements have

the potential to revolutionize compiler design and play a pivotal role in shaping the

next generation of high-performance and adaptable computing systems.

LLMs for code generation. Large language models present a transformative

technology for compiler design and code generation. As LLMs evolve and scale, they

will be commonly used in software development as code assistants that implement,

summarize, and write documentation. To be able to work with large real-world code

bases, LLMs will need to extend their context size, implement some kind of hierarchi-

cal reasoning, and implement advanced retrieval algorithms to focus on specific pieces

of the code. By understanding contextual information and syntactic structures, LLMs

can assist developers in producing more efficient and error-resistant code.

LLMs for unit testing. Additionally, LLMs will need to develop mechanisms to

guarantee the correctness of the generated code. One possible direction to address this

problem is the automatic generation of unit tests that will scale up the development

methodology used for human developers. This involves not only generating test cases

that cover various code paths but also ensuring that these tests are comprehensive

154

enough to validate the correctness of complex program logic. The challenge lies in de-

veloping intelligent algorithms within LLMs that can autonomously discern potential

edge cases and generate relevant tests to cover these scenarios, thereby reinforcing

the reliability of the generated code.

Formal verification. Formal verification methods, including mathematical proofs,

offer a rigorous approach to ensuring the correctness of software. Integrating formal

verification techniques into the LLM-based code generation process involves establish-

ing a mathematical foundation for the generated code’s correctness and adherence to

specified requirements. This approach holds potential for critical applications where

correctness is paramount, such as safety-critical systems and mission-critical software.

As LLMs advance, incorporating these mechanisms not only enhances the trustwor-

thiness of the generated code but also fosters the integration of LLMs into domains

with stringent correctness and safety standards. The synergy of intelligent testing

methodologies and formal verification represents a critical step toward realizing the

full potential of LLMs in compiler design and code generation.

LLMs for compilers. Another notable direction involves using LLMs for au-

tomating generation of domain-specific languages (DSLs) and compiler heuristics.

LLMs’ proficiency in understanding natural language specifications could accelerate

defining DSLs tailored to specific application domains. This approach not only facili-

tates the development of more expressive programming languages but also empowers

developers who may not possess expertise in low-level language intricacies. Moreover,

employing LLMs to learn and optimize compiler heuristics based on vast code repos-

itories could lead to more adaptive and efficient code generation strategies. As LLMs

continue to advance, their integration into compiler design will revolutionize how code

is written, optimized, and adapted to ever-evolving computing architectures.

155

Bibliography

[1] Leather, Hugh and Cummins, Chris, “Machine learning in compilers: Past,

present and future,” in 2020 Forum for Specification and Design Languages

(FDL), pp. 1–8, IEEE, 2020.

[2] Cummins, Christopher Edward, Deep learning for compilers. PhD thesis, Uni-

versity of Edinburgh, UK, 2020.

[3] Sakthivel T., “Neural Network Image.” https://www.linkedin.com/pulse/analyzing-

3-types-neural-networks-deep-learning-sakthivel-t, 2022 (accessed March 5,

2024).

[4] Grubisic, Dejan and Wasti, Bram and Cummins, Chris and Mellor-Crummey,

John and Zlateski, Aleksandar, “LoopTune: Optimizing Tensor Computations

with Reinforcement Learning,” arXiv preprint arXiv:2309.01825, 2023.

[5] Wasti, Bram and Grubisic, Dejan and Steiner, Benoit and Zlateski, Aleksandar,

“LoopStack: ML-friendly ML Compiler Stack,” in NeurIPS Workshops, ML For

Systems, no. 22 in NIPS’22, 2022.

[6] Cummins, Chris and Seeker, Volker and Grubisic, Dejan and Elhoushi, Mostafa

and Liang, Youwei and Roziere, Baptiste and Gehring, Jonas and Gloeckle,

Fabian and Hazelwood, Kim and Synnaeve, Gabriel and others, “Large Lan-

guage Models for Compiler Optimization,” arXiv preprint arXiv:2309.07062,

2023.

156

[7] D. Grubisic, C. Cummins, V. Seeker, and H. Leather, “Compiler generated

feedback for large language models,” arXiv preprint arXiv:2403.14714, 2024.

[8] D. Grubisic, C. Cummins, V. Seeker, and H. Leather, “Priority sampling of

large language models for compilers,” arXiv preprint arXiv:2402.18734, 2024.

[9] Holtzman, Ari and Buys, Jan and Du, Li and Forbes, Maxwell and

Choi, Yejin, “The curious case of neural text degeneration,” arXiv preprint

arXiv:1904.09751, 2019.

[10] Vilnis, Luke and Zemlyanskiy, Yury and Murray, Patrick and Passos, Alexan-

dre Tachard and Sanghai, Sumit, “Arithmetic sampling: parallel diverse decod-

ing for large language models,” in Proceedings on Machine Learning Research,

pp. 35120–35136, PMLR, 2023.

[11] Shi, Kensen and Bieber, David and Sutton, Charles, “Incremental sampling

without replacement for sequence models,” in Proceedings on Machine Learning

Research, pp. 8785–8795, PMLR, 2020.

[12] Lattner, Chris and Adve, Vikram, “LLVM: A compilation framework for life-

long program analysis & transformation,” in International Symposium on Code

Generation and Optimization, 2004. CGO 2004., pp. 75–86, IEEE, 2004.

[13] Cooper, Keith D and Torczon, Linda, Engineering a compiler. Elsevier, 2011.

[14] Franke, Björn and Cummins, Chris and Leather, Hugh and Hazelwood, Kim

and Cole, Murray and Seeker, Volker, “Revealing Compiler Heuristics through

Automated Discovery and Optimization,” in International Symposium on Code

Generation and Optimization, 2023.

157

[15] Chen, Yang and Huang, Yuanjie and Eeckhout, Lieven and Fursin, Grigori and

Peng, Liang and Temam, Olivier and Wu, Chengyong, “Evaluating iterative

optimization across 1000 datasets,” in Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pp. 448–459,

2010.

[16] Desai, Sujay B and Madhvapathy, Surabhi R and Sachid, Angada B and Llinas,

Juan Pablo and Wang, Qingxiao and Ahn, Geun Ho and Pitner, Gregory and

Kim, Moon J and Bokor, Jeffrey and Hu, Chenming and others, “MOS2 tran-

sistors with 1-nanometer gate lengths,” Science, vol. 354, no. 6308, pp. 99–102,

2016.

[17] Knuth, Donald E and Pardo, Luis Trabb, “The early development of program-

ming languages,” A history of computing in the twentieth century, pp. 197–273,

1980.

[18] Backus, John Warner and Heising, William P, “Fortran,” IEEE Transactions

on Electronic Computers, no. 4, pp. 382–385, 1964.

[19] Cunningham, Joseph F, “COBOL,” Communications of the ACM, vol. 6, no. 3,

pp. 79–82, 1963.

[20] Kennedy, Ken, A survey of data flow analysis techniques. IBM Thomas J.

Watson Research Division, 1979.

[21] McKeeman, William M, “Peephole optimization,” Communications of the

ACM, vol. 8, no. 7, pp. 443–444, 1965.

[22] Gillespie, Daniel T, “A general method for numerically simulating the stochastic

158

time evolution of coupled chemical reactions,” Journal of computational physics,

vol. 22, no. 4, pp. 403–434, 1976.

[23] Orszag, Steven A and Israeli, Moshe, “Numerical simulation of viscous incom-

pressible flows,” Annual Review of Fluid Mechanics, vol. 6, no. 1, pp. 281–318,

1974.

[24] Fox, Douglas G and Lilly, Douglas K, “Numerical simulation of turbulent flows,”

Reviews of Geophysics, vol. 10, no. 1, pp. 51–72, 1972.

[25] Dongarra, Jack J and Hinds, A R, “Unrolling loops in Fortran,” Software: Prac-

tice and Experience, vol. 9, no. 3, pp. 219–226, 1979.

[26] Fabri, Janet, “Automatic storage optimization,” in Proceedings of the SIG-

PLAN Symposium on Compiler Construction, pp. 83–91, 1979.

[27] Bornat, Richard, “Code Optimisation,” in Understanding and Writing Compil-

ers, pp. 153–175, Springer, 1979.

[28] Russell, Richard M, “The Cray-1 computer system,” Communications of the

ACM, vol. 21, no. 1, pp. 63–72, 1978.

[29] Goldstein, Ira P and Bobrow, Daniel G, “Extending object oriented program-

ming in Smalltalk,” in Proceedings of the ACM Conference on LISP and Func-

tional Programming, pp. 75–81, 1980.

[30] Nygaard, Kristen and Dahl, Ole-Johan, “The development of the SIMULA

languages,” in History of programming languages, pp. 439–480, Association for

Computing Machinery, 1978.

159

[31] Stroustrup, Bjarne, “The C++ programming language: reference manual,”

tech. rep., Bell Lab., 1984.

[32] Caron, John, “Java: Status Report and Language Overview,” CSCI 5535

Project, Dec. 1995, University of Colorado at Boulder, 1995.

[33] Ellis, Margaret A and Stroustrup, Bjarne, The annotated C++ reference man-

ual. Addison-Wesley Longman Publishing Co., Inc., 1990.

[34] Treleaven, Philip C. and Hopkins, Richard P. and Rautenbach, Paul W., “Com-

bining data flow and control flow computing,” The Computer Journal, vol. 25,

no. 2, pp. 207–217, 1982.

[35] Davidson, Jack W and Fraser, Christopher W, “Eliminating redundant object

code,” in Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pp. 128–132, 1982.

[36] Davidson, Jack W and Holler, Anne M, “A study of a C function inliner,”

Software: Practice and Experience, vol. 18, no. 8, pp. 775–790, 1988.

[37] Lam, Monica, “Software pipelining: An effective scheduling technique for VLIW

machines,” in Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 318–328, 1988.

[38] Chow, Frederick and Hennessy, John, “Register allocation by priority-based col-

oring,” in Proceedings of the SIGPLAN Symposium on Compiler Construction,

pp. 222–232, 1984.

[39] Cooper, Keith D and Kennedy, Ken and Torczon, Linda, “Interprocedural op-

timization: Eliminating unnecessary recompilation,” in Proceedings of the SIG-

160

PLAN Symposium on Compiler Construction, pp. 58–67, 1986.

[40] Pasko, Robert and Schaumont, Patrick and Derudder, Veerle and Vernalde,

Serge and Durackova, Daniela, “A new algorithm for elimination of common

subexpressions,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 18, no. 1, pp. 58–68, 1999.

[41] Mayrand and Leblanc and Merlo, “Experiment on the automatic detection of

function clones in a software system using metrics,” in Proceedings of Interna-

tional Conference on Software Maintenance, pp. 244–253, IEEE, 1996.

[42] Banerjee, Utpal and Eigenmann, Rudolf and Nicolau, Alexandru and Padua,

David A, “Automatic program parallelization,” Proceedings of the IEEE, vol. 81,

no. 2, pp. 211–243, 1993.

[43] Lam, Monica D and Rothberg, Edward E and Wolf, Michael E, “The cache per-

formance and optimizations of blocked algorithms,” ACM SIGOPS Operating

Systems Review, vol. 25, no. Special Issue, pp. 63–74, 1991.

[44] Quilleré, Fabien and Rajopadhye, Sanjay, “Optimizing memory usage in the

polyhedral model,” ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), vol. 22, no. 5, pp. 773–815, 2000.

[45] Rawlings, Rosamund, “Objective-C: an object-oriented language for pragma-

tists,” in IEE Colloquium on Applications of Object-Oriented Programming,

pp. 1–2, IET, 1989.

[46] Sanner, Michel F and others, “Python: a programming language for software

integration and development,” J Mol Graph Model, vol. 17, no. 1, pp. 57–61,

1999.

161

[47] Ihaka, Ross and Gentleman, Robert, “R: a language for data analysis and graph-

ics,” Journal of computational and graphical statistics, vol. 5, no. 3, pp. 299–314,

1996.

[48] Jones, Simon Peyton and Hughes, John and Augustsson, Lennart and Barton,

Dave and Boutel, Brian and Burton, Warren and Fasel, Joseph and Hammond,

Kevin and Hinze, Ralf and Hudak, Paul and others, “Haskell 98,” 1999.

[49] Engel, Joshua, Programming for the Java virtual machine. Addison-Wesley

Professional, 1999.

[50] Cramer, Timothy and Friedman, Richard and Miller, Terrence and Seberger,

David and Wilson, Robert and Wolczko, Mario, “Compiling Java just in time,”

Ieee micro, vol. 17, no. 3, pp. 36–43, 1997.

[51] Eich, Brendan and McKinney, C Rand, “JavaScript Language Specification,”

Techn. Ber. Netscape Communications, Nov, pp. 96–002, 1996.

[52] Richards, Robert and Richards, Robert, “Representational state transfer

(rest),” Pro PHP XML and web services, pp. 633–672, 2006.

[53] Lerdorf, Rasmus and Tatroe, Kevin, Programming PHP. O’Reilly Media, Inc.,

2002.

[54] Forcier, Jeff and Bissex, Paul and Chun, Wesley J, Python web development

with Django. Addison-Wesley Professional, 2008.

[55] Hansson, David Heinemeier and Team, Rails Core, “Ruby on rails,” Develop-

ment, vol. 4, p. 1, 2009.

162

[56] Hejlsberg, Anders and Wiltamuth, Scott and Golde, Peter, C# language speci-

fication. Addison-Wesley Longman Publishing Co., Inc., 2003.

[57] Bhattacharyya, Siddhartha, “DotNet,” Reason-A Technical Journal (Formerly

Reason-A Technical Magazine), vol. 5, pp. 1–5, 2004.

[58] Virding, Robert and Wikström, Claes and Williams, Mike, Concurrent pro-

gramming in ERLANG. Prentice Hall International (UK) Ltd., 1996.

[59] Clark, Keith L and McCabe, Francis G, “Go!—A multi-paradigm programming

language for implementing multi-threaded agents,” Annals of Mathematics and

Artificial Intelligence, vol. 41, pp. 171–206, 2004.

[60] Lattner, Chris, “LLVM and Clang: Next generation compiler technology,” in

The BSD conference, vol. 5, pp. 1–20, 2008.

[61] Marty, Michael R, Cache coherence techniques for multicore processors. PhD

thesis, University of Wisconsin–Madison, USA, 2008.

[62] Xu, Chi and Chen, Xi and Dick, Robert P and Mao, Zhuoqing Morley, “Cache

contention and application performance prediction for multi-core systems,” in

2010 IEEE International Symposium on Performance Analysis of Systems &

Software (ISPASS), pp. 76–86, IEEE, 2010.

[63] Blagodurov, Sergey and Zhuravlev, Sergey and Fedorova, Alexandra,

“Contention-aware scheduling on multicore systems,” ACM Transactions on

Computer Systems (TOCS), vol. 28, no. 4, pp. 1–45, 2010.

[64] Arnold, Matthew and Fink, Stephen and Grove, David and Hind, Michael and

Sweeney, Peter F, “Adaptive optimization in the Jalapeno JVM,” in Proceedings

163

of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pp. 47–65, 2000.

[65] Arnold, Matthew and Hind, Michael and Ryder, Barbara G, “Online feedback-

directed optimization of Java,” ACM SIGPLAN Notices, vol. 37, no. 11,

pp. 111–129, 2002.

[66] Luebke, David, “CUDA: Scalable parallel programming for high-performance

scientific computing,” in 2008 5th IEEE international symposium on biomedical

imaging: from nano to macro, pp. 836–838, IEEE, 2008.

[67] AMD Corporation, “AMD Stream Computing: Software Stack,” AMD white

paper, 2008.

[68] Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E., “ImageNet clas-

sification with deep convolutional neural networks,” in Proceedings of the In-

ternational Conference on Neural Information Processing Systems, vol. 1 of

NIPS’12, (Red Hook, NY, USA), p. 1097–1105, Curran Associates Inc., 2012.

[69] Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob

and Jones, Llion and Gomez, Aidan N. and Kaiser, Lukasz and Polosukhin,

Illia, “Attention is all you need,” in Proceedings of the International Conference

on Neural Information Processing Systems, NIPS’17, (Red Hook, NY, USA),

p. 6000–6010, Curran Associates Inc., 2017.

[70] Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and

Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming

and Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and Kopf,

164

Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Te-

jani, Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu

and Bai, Junjie and Chintala, Soumith, “PyTorch: An Imperative Style, High-

Performance Deep Learning Library,” in Advances in Neural Information Pro-

cessing Systems 32 (H. Wallach and H. Larochelle and A. Beygelzimer and F.

d'Alché-Buc and E. Fox and R. Garnett, ed.), pp. 8024–8035, Curran Asso-

ciates, Inc., 2019.

[71] Abadi, Mart́ın and Barham, Paul and Chen, Jianmin and Chen, Zhifeng and

Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay

and Irving, Geoffrey and Isard, Michael and others, “Tensorflow: A system

for large-scale machine learning,” in 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), pp. 265–283, 2016.

[72] Bezanson, Jeff and Karpinski, Stefan and Shah, Viral B and Edelman, Alan,

“Julia: A fast dynamic language for technical computing,” arXiv preprint

arXiv:1209.5145, 2012.

[73] Ashari, Arash and Tatikonda, Shirish and Boehm, Matthias and Reinwald,

Berthold and Campbell, Keith and Keenleyside, John and Sadayappan, P, “On

optimizing machine learning workloads via kernel fusion,” ACM SIGPLAN No-

tices, vol. 50, no. 8, pp. 173–182, 2015.

[74] Fey, Matthias and Lenssen, Jan Eric, “Fast graph representation learning with

PyTorch Geometric,” arXiv preprint arXiv:1903.02428, 2019.

[75] Brown, Tom and Mann, Benjamin and Ryder, Nick and Subbiah, Melanie and

Kaplan, Jared D and Dhariwal, Prafulla and Neelakantan, Arvind and Shyam,

165

Pranav and Sastry, Girish and Askell, Amanda and others, “Language mod-

els are few-shot learners,” Advances in neural information processing systems,

vol. 33, pp. 1877–1901, 2020.

[76] Li, Shen and Zhao, Yanli and Varma, Rohan and Salpekar, Omkar and Noord-

huis, Pieter and Li, Teng and Paszke, Adam and Smith, Jeff and Vaughan,

Brian and Damania, Pritam and Chintala, Soumith, “PyTorch distributed:

experiences on accelerating data parallel training,” Proceedings of the VLDB

Endowment, vol. 13, p. 3005–3018, aug 2020.

[77] Moritz, Philipp and Nishihara, Robert and Wang, Stephanie and Tumanov,

Alexey and Liaw, Richard and Liang, Eric and Elibol, Melih and Yang,

Zongheng and Paul, William and Jordan, Michael I and others, “Ray: A dis-

tributed framework for emerging AI applications,” in 13th USENIX symposium

on operating systems design and implementation (OSDI 18), pp. 561–577, 2018.

[78] Sergeev, Alexander and Del Balso, Mike, “Horovod: fast and easy distributed

deep learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[79] Rasley, Jeff and Rajbhandari, Samyam and Ruwase, Olatunji and He, Yuxiong,

“Deepspeed: System optimizations enable training deep learning models with

over 100 billion parameters,” in Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 3505–3506, 2020.

[80] Frostig, Roy and Johnson, Matthew James and Leary, Chris, “Compiling ma-

chine learning programs via high-level tracing,” Systems for Machine Learning,

vol. 4, no. 9, 2018.

166

[81] Cito, Jürgen and Gall, Harald C., “Using Docker containers to improve repro-

ducibility in software engineering research,” in Proceedings of the International

Conference on Software Engineering Companion, ICSE ’16, (New York, NY,

USA), p. 906–907, Association for Computing Machinery, 2016.

[82] Saito, Hideto and Lee, Hui-Chuan Chloe and Hsu, Ke-Jou Carol, Kubernetes

Cookbook. Packt Publishing, 2016.

[83] Meng, Xiangrui and Bradley, Joseph and Yavuz, Burak and Sparks, Evan and

Venkataraman, Shivaram and Liu, Davies and Freeman, Jeremy and Tsai, DB

and Amde, Manish and Owen, Sean and others, “Mllib: Machine learning

in Apache Spark,” The journal of machine learning research, vol. 17, no. 1,

pp. 1235–1241, 2016.

[84] White, Tom, Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[85] Garg, Nishant, Apache Kafka. Packt Publishing Birmingham, UK, 2013.

[86] Rocklin, Matthew and others, “Dask: Parallel computation with blocked algo-

rithms and task scheduling,” in Proceedings of the Python in Science Confer-

ence, vol. 130, p. 136, SciPy Austin, TX, 2015.

[87] LaValle, Steven M, Virtual reality. Cambridge university press, 2023.

[88] Chen, Yunqiang and Wang, Qing and Chen, Hong and Song, Xiaoyu and Tang,

Hui and Tian, Mengxiao, “An overview of augmented reality technology,” in

Journal of Physics: Conference Series, vol. 1237, p. 022082, IOP Publishing,

2019.

167

[89] Badue, Claudine and Guidolini, Rânik and Carneiro, Raphael Vivacqua and

Azevedo, Pedro and Cardoso, Vinicius B and Forechi, Avelino and Jesus, Luan

and Berriel, Rodrigo and Paixao, Thiago M and Mutz, Filipe and others, “Self-

driving cars: A survey,” Expert Systems with Applications, vol. 165, p. 113816,

2021.

[90] Stallman, Richard M and others, Using and porting the GNU compiler collec-

tion, vol. 86. Free Software Foundation Boston, MA, USA, 1999.

[91] Bodin, François and Kisuki, Toru and Knijnenburg, Peter and O’Boyle, Mike

and Rohou, Erven, “Iterative compilation in a non-linear optimisation space,”

in Workshop on profile and feedback-directed compilation, 1998.

[92] Pan, Zhelong and Eigenmann, Rudolf, “Fast and Effective Orchestration of

Compiler Optimizations for Automatic Performance Tuning,” in Proceedings of

the International Symposium on Code Generation and Optimization, CGO ’06,

(USA), p. 319–332, IEEE Computer Society, 2006.

[93] Martins, Luiz GA and Nobre, Ricardo and Cardoso, Joao MP and Delbem,

Alexandre CB and Marques, Eduardo, “Clustering-based selection for the ex-

ploration of compiler optimization sequences,” ACM Transactions on Architec-

ture and Code Optimization (TACO), vol. 13, no. 1, pp. 1–28, 2016.

[94] Nobre, Ricardo and Martins, Luiz GA and Cardoso, Joao MP, “Use of pre-

viously acquired positioning of optimizations for phase ordering exploration,”

in Proceedings of the International Workshop on Software and Compilers for

Embedded Systems, pp. 58–67, 2015.

168

[95] Ashouri, Amir Hossein, “Design space exploration methodology for compiler

parameters in VLIW processors,” Archive of Politecnico di Milano, 2012.

[96] Almagor, Lelac and Cooper, Keith D and Grosul, Alexander and Harvey, Timo-

thy J and Reeves, Steven W and Subramanian, Devika and Torczon, Linda and

Waterman, Todd, “Finding effective compilation sequences,” ACM SIGPLAN

Notices, vol. 39, no. 7, pp. 231–239, 2004.

[97] Cooper, Keith D and Schielke, Philip J and Subramanian, Devika, “Optimizing

for reduced code space using genetic algorithms,” in Proceedings of the ACM

SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Sys-

tems, pp. 1–9, 1999.

[98] Beaty, Steven J, “Genetic algorithms and instruction scheduling,” in Proceed-

ings of the Annual International Symposium on Microarchitecture, pp. 206–211,

1991.

[99] White, David R and Arcuri, Andrea and Clark, John A, “Evolutionary improve-

ment of programs,” IEEE Transactions on Evolutionary Computation, vol. 15,

no. 4, pp. 515–538, 2011.

[100] Kukunas, James and Cupper, Robert D and Kapfhammer, Gregory M, “A

genetic algorithm to improve Linux kernel performance on resource-constrained

devices,” in Proceedings of the Annual Conference Companion on Genetic and

Evolutionary Computation, pp. 2095–2096, 2010.

[101] Harman, Mark and Langdon, William B and Jia, Yue and White, David R and

Arcuri, Andrea and Clark, John A, “The GISMOE challenge: Constructing

the pareto program surface using genetic programming to find better programs

169

(keynote paper),” in Proceedings of the IEEE/ACM International Conference

on Automated Software Engineering, pp. 1–14, 2012.

[102] Cooper, Keith D and Grosul, Alexander and Harvey, Timothy J and Reeves,

Steven and Subramanian, Devika and Torczon, Linda and Waterman, Todd,

“ACME: adaptive compilation made efficient,” ACM SIGPLAN Notices,

vol. 40, no. 7, pp. 69–77, 2005.

[103] Ashouri, Amir H and Bignoli, Andrea and Palermo, Gianluca and Silvano,

Cristina and Kulkarni, Sameer and Cavazos, John, “Micomp: Mitigating the

compiler phase-ordering problem using optimization sub-sequences and machine

learning,” ACM Transactions on Architecture and Code Optimization (TACO),

vol. 14, no. 3, pp. 1–28, 2017.

[104] Cooper, Keith D and Subramanian, Devika and Torczon, Linda, “Adaptive

optimizing compilers for the 21st century,” The Journal of Supercomputing,

vol. 23, pp. 7–22, 2002.

[105] Pouchet, Louis-Noël and Bastoul, Cédric and Cohen, Albert and Cavazos, John,

“Iterative optimization in the polyhedral model: Part II, multidimensional

time,” ACM SIGPLAN Notices, vol. 43, no. 6, pp. 90–100, 2008.

[106] Whaley, R Clinton and Dongarra, Jack J, “Automatically tuned linear algebra

software,” in SC’98: Proceedings of the ACM/IEEE Conference on Supercom-

puting, pp. 38–38, IEEE, 1998.

[107] Puschel, Markus and Moura, José MF and Johnson, Jeremy R and Padua,

David and Veloso, Manuela M and Singer, Bryan W and Xiong, Jianxin and

Franchetti, Franz and Gacic, Aca and Voronenko, Yevgen and others, “SPIRAL:

170

Code generation for DSP transforms,” Proceedings of the IEEE, vol. 93, no. 2,

pp. 232–275, 2005.

[108] Ansel, Jason and Chan, Cy and Wong, Yee Lok and Olszewski, Marek and Zhao,

Qin and Edelman, Alan and Amarasinghe, Saman, “PetaBricks: A language

and compiler for algorithmic choice,” ACM Sigplan Notices, vol. 44, no. 6,

pp. 38–49, 2009.

[109] Steuwer, Michel and Remmelg, Toomas and Dubach, Christophe, “Lift: a func-

tional data-parallel IR for high-performance GPU code generation,” in 2017

IEEE/ACM International Symposium on Code Generation and Optimization

(CGO), pp. 74–85, IEEE, 2017.

[110] Lee, Kyong-Ha and Lee, Yoon-Joon and Choi, Hyunsik and Chung, Yon Dohn

and Moon, Bongki, “Parallel data processing with MapReduce: a survey,” AcM

sIGMoD record, vol. 40, no. 4, pp. 11–20, 2012.

[111] Holewinski, Justin and Pouchet, Louis-Noël and Sadayappan, Ponnuswamy,

“High-performance code generation for stencil computations on GPU architec-

tures,” in Proceedings of the ACM international Conference on Supercomputing,

pp. 311–320, 2012.

[112] Cavazos, John and Dubach, Christophe and Agakov, Felix and Bonilla, Edwin

and O’Boyle, Michael FP and Fursin, Grigori and Temam, Olivier, “Automatic

performance model construction for the fast software exploration of new hard-

ware designs,” in Proceedings of the International Conference on Compilers,

Architecture and Synthesis for Embedded Systems, pp. 24–34, 2006.

[113] Cavazos, John and O’Boyle, Michael FP, “Method-specific dynamic compilation

171

using logistic regression,” ACM SIGPLAN Notices, vol. 41, no. 10, pp. 229–240,

2006.

[114] Agakov, F. and Bonilla, E. and Cavazos, J. and Franke, B. and Fursin, G. and

O’Boyle, M. F. P. and Thomson, J. and Toussaint, M. and Williams, C. K. I.,

“Using Machine Learning to Focus Iterative Optimization,” in Proceedings of

the International Symposium on Code Generation and Optimization, CGO ’06,

(USA), p. 295–305, IEEE Computer Society, 2006.

[115] Huang, Qijing and Haj-Ali, Ameer and Moses, William and Xiang, John and

Stoica, Ion and Asanovic, Krste and Wawrzynek, John, “Autophase: Compiler

phase-ordering for High Level Synthesis with Deep Reinforcement Learning,”

in 2019 IEEE 27th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM), pp. 308–308, IEEE, 2019.

[116] Ferrante, Jeanne and Ottenstein, Karl J and Warren, Joe D, “The program

dependence graph and its use in optimization,” ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[117] Ottenstein, Karl Joseph, Data-flow graphs as an intermediate program form.

PhD thesis, Purdue University, USA, 1978.

[118] Park, Eunjung and Cavazos, John and Alvarez, Marco A, “Using graph-based

program characterization for predictive modeling,” in Proceedings of the Inter-

national Symposium on Code Generation and Optimization, pp. 196–206, 2012.

[119] Fursin, Grigori and Kashnikov, Yuriy and Memon, Abdul Wahid and Chamski,

Zbigniew and Temam, Olivier and Namolaru, Mircea and Yom-Tov, Elad and

Mendelson, Bilha and Zaks, Ayal and Courtois, Eric and others, “Milepost

172

GCC: Machine learning enabled self-tuning compiler,” International journal of

parallel programming, vol. 39, pp. 296–327, 2011.

[120] Cavazos, John and Fursin, Grigori and Agakov, Felix and Bonilla, Edwin and

O’Boyle, Michael FP and Temam, Olivier, “Rapidly selecting good compiler op-

timizations using performance counters,” in International Symposium on Code

Generation and Optimization (CGO’07), pp. 185–197, IEEE, 2007.

[121] Mucci, Philip J and Browne, Shirley and Deane, Christine and Ho, George,

“PAPI: A portable interface to hardware performance counters,” in Proceedings

of the Department of Defense HPCMP Users Group Conference, vol. 710, 1999.

[122] Adhianto, Laksono and Banerjee, Sinchan and Fagan, Mike and Krentel, Mark

and Marin, Gabriel and Mellor-Crummey, John and Tallent, Nathan R, “HPC-

Toolkit: Tools for performance analysis of optimized parallel programs,” Con-

currency and Computation: Practice and Experience, vol. 22, no. 6, pp. 685–701,

2010.

[123] Graham, Susan L and Kessler, Peter B and McKusick, Marshall K, “Gprof: A

call graph execution profiler,” ACM SIGPLAN Notices, vol. 17, no. 6, pp. 120–

126, 1982.

[124] Ashouri, Amir Hossein and Mariani, Giovanni and Palermo, Gianluca and Park,

Eunjung and Cavazos, John and Silvano, Cristina, “Cobayn: Compiler auto-

tuning framework using bayesian networks,” ACM Transactions on Architecture

and Code Optimization (TACO), vol. 13, no. 2, pp. 1–25, 2016.

[125] Cox, David Roxbee and Snell, E Joyce, Analysis of binary data, vol. 32. CRC

press, 1989.

173

[126] Vapnik, Vladimir N and Chervonenkis, A Ya, “On the uniform convergence of

relative frequencies of events to their probabilities,” in Measures of complexity,

pp. 11–30, Springer, 2015.

[127] Fisher, Ronald A, “The use of multiple measurements in taxonomic problems,”

Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[128] Breiman, Leo, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

[129] Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J, “Learning

representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–

536, 1986.

[130] Zhou, Jie and Cui, Ganqu and Hu, Shengding and Zhang, Zhengyan and Yang,

Cheng and Liu, Zhiyuan and Wang, Lifeng and Li, Changcheng and Sun,

Maosong, “Graph neural networks: A review of methods and applications,”

AI open, vol. 1, pp. 57–81, 2020.

[131] Pearl, Judea, Probabilistic reasoning in intelligent systems: networks of plausi-

ble inference. Morgan Kaufmann, 1988.

[132] Kingma, Diederik P and Welling, Max, “Auto-encoding variational bayes,”

arXiv preprint arXiv:1312.6114, 2013.

[133] Ho, Jonathan and Jain, Ajay and Abbeel, Pieter, “Denoising diffusion prob-

abilistic models,” Advances in neural information processing systems, vol. 33,

pp. 6840–6851, 2020.

[134] Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing

and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Ben-

174

gio, Yoshua, “Generative adversarial networks,” Communications of the ACM,

vol. 63, no. 11, pp. 139–144, 2020.

[135] Schölkopf, Bernhard, “The kernel trick for distances,” Advances in neural in-

formation processing systems, vol. 13, 2000.

[136] Sanchez, Ricardo Nabinger and Amaral, Jose Nelson and Szafron, Duane and

Pirvu, Marius and Stoodley, Mark, “Using machines to learn method-specific

compilation strategies,” in International Symposium on Code Generation and

Optimization (CGO 2011), pp. 257–266, IEEE, 2011.

[137] Stephenson, Mark and Amarasinghe, Saman, “Predicting unroll factors using

supervised classification,” in International symposium on code generation and

optimization, pp. 123–134, IEEE, 2005.

[138] Park, Eunjung and Kulkarni, Sameer and Cavazos, John, “An evaluation of

different modeling techniques for iterative compilation,” in Proceedings of the

International Conference on Compilers, Architectures and Synthesis for Em-

bedded Systems, pp. 65–74, 2011.

[139] Fraser, Christopher W, “Automatic inference of models for statistical code com-

pression,” ACM SIGPLAN Notices, vol. 34, no. 5, pp. 242–246, 1999.

[140] Monsifrot, Antoine and Bodin, François and Quiniou, Rene, “A machine learn-

ing approach to automatic production of compiler heuristics,” in Proceedings of

the International Conference on Artificial Intelligence: Methodology, Systems,

and Applications, pp. 41–50, Springer, 2002.

[141] Herrera, Victor M and Khoshgoftaar, Taghi M and Villanustre, Flavio and

Furht, Borko, “Random forest implementation and optimization for Big Data

175

analytics on LexisNexis’s high performance computing cluster platform,” Jour-

nal of Big Data, vol. 6, no. 1, pp. 1–36, 2019.

[142] Sharma, Sagar and Sharma, Simone and Athaiya, Anidhya, “Activation func-

tions in neural networks,” Towards Data Sci, vol. 6, no. 12, pp. 310–316, 2017.

[143] Kingma, Diederik P and Ba, Jimmy, “Adam: A method for stochastic opti-

mization,” arXiv preprint arXiv:1412.6980, 2014.

[144] Tieleman, Tijmen and Hinton, G, “RMSprop: Divide the gradient by a running

average of its recent magnitude,” Notes from Lecture, slide 27, 2017.

[145] Zeiler, Matthew D, “Adadelta: an adaptive learning rate method,” arXiv

preprint arXiv:1212.5701, 2012.

[146] Ioffe, Sergey and Szegedy, Christian, “Batch Normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proceedings on Ma-

chine Learning Research, pp. 448–456, PMLR, 2015.

[147] Yang, Shouguo and Shi, Zhiqiang and Zhang, Guodong and Li, Mingxuan and

Ma, Yuan and Sun, Limin, “Understand code style: Efficient cnn-based com-

piler optimization recognition system,” in ICC 2019-2019 IEEE International

Conference on Communications (ICC), pp. 1–6, IEEE, 2019.

[148] Sharma, Tushar and Efstathiou, Vasiliki and Louridas, Panos and Spinellis, Dio-

midis, “On the feasibility of transfer-learning code smells using deep learning,”

arXiv preprint arXiv:1904.03031, 2019.

[149] Cummins, Chris and Fisches, Zacharias V and Ben-Nun, Tal and Hoefler,

Torsten and O’Boyle, Michael FP and Leather, Hugh, “Programl: A graph-

176

based program representation for data flow analysis and compiler optimiza-

tions,” in Proceedings on Machine Learning Research, pp. 2244–2253, PMLR,

2021.

[150] Cyphers, Scott and Bansal, Arjun K and Bhiwandiwalla, Anahita and Bobba,

Jayaram and Brookhart, Matthew and Chakraborty, Avijit and Constable, Will

and Convey, Christian and Cook, Leona and Kanawi, Omar and others, “In-

tel nGraph: An intermediate representation, compiler, and executor for deep

learning,” arXiv preprint arXiv:1801.08058, 2018.

[151] Amit Sabne, “XLA : Compiling Machine Learning for Peak Performance.”

https://github.com/openxla/xla, 2020. GitHub Repository.

[152] Allamanis, Miltiadis and Barr, Earl T and Devanbu, Premkumar and Sutton,

Charles, “A survey of machine learning for big code and naturalness,” ACM

Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[153] Brauckmann, Alexander and Goens, Andrés and Ertel, Sebastian and Castril-

lon, Jeronimo, “Compiler-based graph representations for deep learning models

of code,” in Proceedings of the International Conference on Compiler Construc-

tion, pp. 201–211, 2020.

[154] Dam, Hoa Khanh and Pham, Trang and Ng, Shien Wee and Tran, Truyen

and Grundy, John and Ghose, Aditya and Kim, Taeksu and Kim, Chul-Joo,

“Lessons learned from using a deep tree-based model for software defect predic-

tion in practice,” in 2019 IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR), pp. 46–57, IEEE, 2019.

177

[155] Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi, “Convolu-

tional neural networks over tree structures for programming language process-

ing,” in Proceedings of the AAAI Conference on Artificial Intelligence, AAAI’16,

p. 1287–1293, AAAI Press, 2016.

[156] Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi, “Convolutional

neural networks over tree structures for programming language processing,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[157] Li, Yujia and Gu, Chenjie and Dullien, Thomas and Vinyals, Oriol and Kohli,

Pushmeet, “Graph matching networks for learning the similarity of graph struc-

tured objects,” in Proceedings on Machine Learning Research, pp. 3835–3845,

PMLR, 2019.

[158] Yang, Junhan and Liu, Zheng and Xiao, Shitao and Li, Chaozhuo and Lian,

Defu and Agrawal, Sanjay and Singh, Amit and Sun, Guangzhong and Xie,

Xing, “GraphFormers: GNN-nested transformers for representation learning

on textual graph,” Advances in Neural Information Processing Systems, vol. 34,

pp. 28798–28810, 2021.

[159] Haj-Ali, Ameer and Ahmed, Nesreen K and Willke, Ted and Shao, Yakun

Sophia and Asanovic, Krste and Stoica, Ion, “Neurovectorizer: End-to-end vec-

torization with deep reinforcement learning,” in Proceedings of the ACM/IEEE

International Symposium on Code Generation and Optimization, pp. 242–255,

2020.

[160] Ahn, Byung Hoon and Pilligundla, Prannoy and Yazdanbakhsh, Amir and Es-

maeilzadeh, Hadi, “Chameleon: Adaptive code optimization for expedited deep

178

neural network compilation,” arXiv preprint arXiv:2001.08743, 2020.

[161] Mircea Trofin and Yundi Qian and Eugene Brevdo and Zinan Lin and Krzysztof

Choromanski and David Li, “MLGO: a Machine Learning Guided Compiler

Optimizations Framework,” arXiv:2101.04808, 2021.

[162] Brauckmann, Alexander and Goens, Andrés and Castrillon, Jeronimo, “A rein-

forcement learning environment for polyhedral optimizations,” arXiv preprint

arXiv:2104.13732, 2021.

[163] Cummins, Chris and Wasti, Bram and Guo, Jiadong and Cui, Brandon and

Ansel, Jason and Gomez, Sahir and Jain, Somya and Liu, Jia and Teytaud,

Olivier and Steiner, Benoit and Tian, Yuandong and Leather, Hugh, “Com-

pilerGym: Robust, Performant Compiler Optimization Environments for AI

Research,” in CGO, 2022.

[164] Neelakantan, Arvind and Le, Quoc V and Sutskever, Ilya, “Neural pro-

grammer: Inducing latent programs with gradient descent,” arXiv preprint

arXiv:1511.04834, 2015.

[165] Liang, Chen and Berant, Jonathan and Le, Quoc and Forbus, Kenneth D and

Lao, Ni, “Neural symbolic machines: Learning semantic parsers on freebase

with weak supervision,” arXiv preprint arXiv:1611.00020, 2016.

[166] Ye, Wei and Xie, Rui and Zhang, Jinglei and Hu, Tianxiang and Wang, Xiaoyin

and Zhang, Shikun, “Leveraging Code Generation to Improve Code Retrieval

and Summarization via Dual Learning,” in Proceedings of The Web Confer-

ence 2020, WWW ’20, (New York, NY, USA), p. 2309–2319, Association for

Computing Machinery, 2020.

179

[167] Shido, Yusuke and Kobayashi, Yasuaki and Yamamoto, Akihiro and Miyamoto,

Atsushi and Matsumura, Tadayuki, “Automatic source code summarization

with extended tree-lstm,” in 2019 International Joint Conference on Neural

Networks (IJCNN), pp. 1–8, IEEE, 2019.

[168] Li, Yujia and Choi, David and Chung, Junyoung and Kushman, Nate and

Schrittwieser, Julian and Leblond, Rémi and Eccles, Tom and Keeling, James

and Gimeno, Felix and Lago, Agustin Dal and Hubert, Thomas and Choy, Pe-

ter and d’Autume, Cyprien de Masson and Babuschkin, Igor and Chen, Xinyun

and Huang, Po-Sen and Welbl, Johannes and Gowal, Sven and Cherepanov,

Alexey and Molloy, James and Mankowitz, Daniel J. and Robson, Esme Suther-

land and Kohli, Pushmeet and de Freitas, Nando and Kavukcuoglu, Koray and

Vinyals, Oriol, “Competition-Level Code Generation with AlphaCode,” Sci-

ence, vol. 378, no. 6624, 2022.

[169] Baptiste Rozière and Jonas Gehring and Fabian Gloeckle and Sten Sootla and

Itai Gat and Xiaoqing Ellen Tan and Yossi Adi and Jingyu Liu and Tal Remez

and Jérémy Rapin and Artyom Kozhevnikov and Ivan Evtimov and Joanna

Bitton and Manish Bhatt and Cristian Canton Ferrer and Aaron Grattafiori

and Wenhan Xiong and Alexandre Défossez and Jade Copet and Faisal Azhar

and Hugo Touvron and Louis Martin and Nicolas Usunier and Thomas Scialom

and Gabriel Synnaeve, “Code Llama: Open Foundation Models for Code,”

arXiv:2308.12950, 2023.

[170] OpenAI, “ChatGPT.” https://chat.openai.com/.

[171] Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng,

Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and

180

Jiang, Daxin and others, “CodeBERT: A Pre-trained Model for Programming

and Natural Languages,” arXiv:2002.08155, 2020.

[172] Daya Guo and Shuo Ren and Shuai Lu and Zhangyin Feng and Duyu Tang

and Shujie Liu and Long Zhou and Nan Duan and Alexey Svyatkovskiy and

Shengyu Fu and Michele Tufano and Shao Kun Deng and Colin Clement and

Dawn Drain and Neel Sundaresan and Jian Yin and Daxin Jiang and Ming

Zhou, “GraphCodeBERT: Pre-training Code Representations with Data Flow,”

arXiv:2009.08366, 2021.

[173] Wang, Yue and Wang, Weishi and Joty, Shafiq and Hoi, Steven CH, “CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-

standing and Generation,” arXiv:2109.00859, 2021.

[174] Li, Raymond and Allal, Loubna Ben and Zi, Yangtian and Muennighoff,

Niklas and Kocetkov, Denis and Mou, Chenghao and Marone, Marc and Akiki,

Christopher and Li, Jia and Chim, Jenny and Liu, Qian and Zheltonozhskii,

Evgenii and Zhuo, Terry Yue and Wang, Thomas and Dehaene, Olivier and

Davaadorj, Mishig and Lamy-Poirier, Joel and Monteiro, João and Shliazhko,

Oleh and Gontier, Nicolas and Meade, Nicholas and Zebaze, Armel and Yee,

Ming-Ho and Umapathi, Logesh Kumar and Zhu, Jian and Lipkin, Benjamin

and Oblokulov, Muhtasham and Wang, Zhiruo and Murthy, Rudra and Stiller-

man, Jason and Patel, Siva Sankalp and Abulkhanov, Dmitry and Zocca, Marco

and Dey, Manan and Zhang, Zhihan and Fahmy, Nour and Bhattacharyya, Ur-

vashi and Yu, Wenhao and Singh, Swayam and Luccioni, Sasha and Villegas,

Paulo and Kunakov, Maxim and Zhdanov, Fedor and Romero, Manuel and

Lee, Tony and Timor, Nadav and Ding, Jennifer and Schlesinger, Claire and

181

Schoelkopf, Hailey and Ebert, Jan and Dao, Tri and Mishra, Mayank and Gu,

Alex and Robinson, Jennifer and Anderson, Carolyn Jane and Dolan-Gavitt,

Brendan and Contractor, Danish and Reddy, Siva and Fried, Daniel and Bah-

danau, Dzmitry and Jernite, Yacine and Ferrandis, Carlos Muñoz and Hughes,

Sean and Wolf, Thomas and Guha, Arjun and von Werra, Leandro and de Vries,

Harm, “StarCoder: may the source be with you!,” arXiv:2305.06161, 2023.

[175] Loubna Ben Allal and Raymond Li and Denis Kocetkov and Chenghao Mou

and Christopher Akiki and Carlos Munoz Ferrandis and Niklas Muennighoff and

Mayank Mishra and Alex Gu and Manan Dey and Logesh Kumar Umapathi

and Carolyn Jane Anderson and Yangtian Zi and Joel Lamy Poirier and Hailey

Schoelkopf and Sergey Troshin and Dmitry Abulkhanov and Manuel Romero

and Michael Lappert and Francesco De Toni and Bernardo Garćıa del Ŕıo and

Qian Liu and Shamik Bose and Urvashi Bhattacharyya and Terry Yue Zhuo and

Ian Yu and Paulo Villegas and Marco Zocca and Sourab Mangrulkar and David

Lansky and Huu Nguyen and Danish Contractor and Luis Villa and Jia Li and

Dzmitry Bahdanau and Yacine Jernite and Sean Hughes and Daniel Fried and

Arjun Guha and Harm de Vries and Leandro von Werra, “SantaCoder: don’t

reach for the stars!,” arXiv:2301.03988, 2023.

[176] DeepSeek, “DeepSeek Coder: Let the Code Write Itself.”

https://github.com/deepseek-ai/DeepSeek-Coder, 2023.

[177] Ye, Guixin and Tang, Zhanyong and Tan, Shin Hwei and Huang, Songfang

and Fang, Dingyi and Sun, Xiaoyang and Bian, Lizhong and Wang, Haibo

and Wang, Zheng, “Automated conformance testing for JavaScript engines via

deep compiler fuzzing,” in Proceedings of the ACM SIGPLAN International

182

Conference on Programming Language Design and Implementation, PLDI 2021,

(New York, NY, USA), p. 435–450, Association for Computing Machinery, 2021.

[178] Deng, Yinlin and Xia, Chunqiu Steven and Peng, Haoran and Yang, Chenyuan

and Zhang, Lingming, “Large Language Models Are Zero-Shot Fuzzers: Fuzzing

Deep-Learning Libraries via Large Language Models,” in Proceedings of the

ACM SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2023, (New York, NY, USA), p. 423–435, Association for Computing

Machinery, 2023.

[179] Chunqiu Steven Xia and Matteo Paltenghi and Jia Le Tian and Michael

Pradel and Lingming Zhang, “Universal Fuzzing via Large Language Models,”

arXiv:2308.04748, 2023.

[180] Max Schäfer and Sarah Nadi and Aryaz Eghbali and Frank Tip, “Adaptive Test

Generation Using a Large Language Model,” arXiv:2302.06527, 2023.

[181] Szafraniec, Marc and Roziere, Baptiste and Charton, Francois and Leather,

Hugh and Labatut, Patrick and Synnaeve, Gabriel, “Code Translation with

Compiler Representations,” arXiv:2207.03578, 2022.

[182] Gallagher, Shannon K and Klieber, William E and Svoboda, David, “LLVM

Intermediate Representation for Code Weakness Identification,” 2022.

[183] Xia, Chunqiu Steven and Zhang, Lingming, “Less training, more repairing

please: revisiting automated program repair via zero-shot learning,” in Proceed-

ings of the ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, pp. 959–971, 2022.

183

[184] Chunqiu Steven Xia and Lingming Zhang, “Keep the Conversation Going: Fix-

ing 162 out of 337 bugs for $0.42 each using ChatGPT,” arXiv:2304.00385,

2023.

[185] Chen, Xue-Wen and Lin, Xiaotong, “Big data deep learning: challenges and

perspectives,” IEEE access, vol. 2, pp. 514–525, 2014.

[186] Torrey, Lisa and Shavlik, Jude, “Transfer learning,” in Handbook of research on

machine learning applications and trends: algorithms, methods, and techniques,

pp. 242–264, IGI global, 2010.

[187] Hadi, Muhammad Usman and Qureshi, Rizwan and Shah, Abbas and Irfan,

Muhammad and Zafar, Anas and Shaikh, Muhammad Bilal and Akhtar, Naveed

and Wu, Jia and Mirjalili, Seyedali and others, “A survey on large language

models: Applications, challenges, limitations, and practical usage,” Authorea

Preprints, 2023.

[188] Yang, Xuejun and Chen, Yang and Eide, Eric and Regehr, John, “Finding

and understanding bugs in C compilers,” in Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 283–

294, 2011.

[189] Tsimpourlas, Foivos and Petoumenos, Pavlos and Xu, Min and Cummins, Chris

and Hazelwood, Kim and Rajan, Ajitha and Leather, Hugh, “Benchpress: A

deep active benchmark generator,” in Proceedings of the International Confer-

ence on Parallel Architectures and Compilation Techniques, pp. 505–516, 2022.

[190] Cummins, Chris and Petoumenos, Pavlos and Wang, Zheng and Leather, Hugh,

“Synthesizing benchmarks for predictive modeling,” in 2017 IEEE/ACM Inter-

184

national Symposium on Code Generation and Optimization (CGO), pp. 86–99,

IEEE, 2017.

[191] Goens, Andrés and Brauckmann, Alexander and Ertel, Sebastian and Cummins,

Chris and Leather, Hugh and Castrillon, Jeronimo, “A case study on machine

learning for synthesizing benchmarks,” in Proceedings of the ACM SIGPLAN

International Workshop on Machine Learning and Programming Languages,

pp. 38–46, 2019.

[192] Tsimpourlas, Foivos and Petoumenos, Pavlos and Xu, Min and Cummins,

Chris and Hazelwood, Kim and Rajan, Ajitha and Leather, Hugh, “BenchDi-

rect: A Directed Language Model for Compiler Benchmarks,” arXiv preprint

arXiv:2303.01557, 2023.

[193] Markidis, Stefano and Der Chien, Steven Wei and Laure, Erwin and Peng, Ivy

Bo and Vetter, Jeffrey S, “Nvidia tensor core programmability, performance

& precision,” in 2018 IEEE international parallel and distributed processing

symposium workshops (IPDPSW) (Pat Langley, ed.), (Stanford, CA), pp. 522–

531, IEEE, 2018.

[194] Choquette, Jack and Gandhi, Wishwesh and Giroux, Olivier and Stam, Nick

and Krashinsky, Ronny, “NVIDIA A100 tensor core GPU: Performance and

innovation,” IEEE Micro, vol. 41, no. 2, pp. 29–35, 2021.

[195] Lomont, Chris, “Introduction to intel advanced vector extensions,” Intel white

paper, vol. 23, pp. 1–21, 2011.

[196] Jeong, Hwancheol and Kim, Sunghoon and Lee, Weonjong and Myung,

Seok-Ho, “Performance of SSE and AVX instruction sets,” arXiv preprint

185

arXiv:1211.0820, 2012.

[197] Wittmann, Markus and Zeiser, Thomas and Hager, Georg and Wellein, Ger-

hard, “Short note on costs of floating point operations on current x86-64 archi-

tectures: Denormals, overflow, underflow, and division by zero,” arXiv preprint

arXiv:1506.03997, 2015.

[198] Tekin, A and Tuncer Durak, A and Piechurski, C and Kaliszan, D and Aylin

Sungur, F and Robertsén, F and Gschwandtner, P, “State-of-the-art and trends

for computing and interconnect network solutions for HPC and AI,” Partnership

for Advanced Computing in Europe, Available online at www.praceri.eu, 2021.

[199] Jouppi, Norman P and Young, Cliff and Patil, Nishant and Patterson, David

and Agrawal, Gaurav and Bajwa, Raminder and Bates, Sarah and Bhatia,

Suresh and Boden, Nan and Borchers, Al and others, “In-datacenter perfor-

mance analysis of a tensor processing unit,” in Proceedings of the Annual In-

ternational Symposium on Computer Architecture, pp. 1–12, 2017.

[200] Jia, Zhe and Tillman, Blake and Maggioni, Marco and Scarpazza, Daniele Paolo,

“Dissecting the Graphcore IPU architecture via microbenchmarking,” arXiv

preprint arXiv:1912.03413, 2019.

[201] Rocki, Kamil and Van Essendelft, Dirk and Sharapov, Ilya and Schreiber,

Robert and Morrison, Michael and Kibardin, Vladimir and Portnoy, Andrey

and Dietiker, Jean Francois and Syamlal, Madhava and James, Michael, “Fast

stencil-code computation on a wafer-scale processor,” in SC20: International

Conference for High Performance Computing, Networking, Storage and Analy-

sis, pp. 1–14, IEEE, 2020.

186

[202] Chetlur, Sharan and Woolley, Cliff and Vandermersch, Philippe and Cohen,

Jonathan and Tran, John and Catanzaro, Bryan and Shelhamer, Evan, “cudnn:

Efficient primitives for deep learning,” arXiv preprint arXiv:1410.0759, 2014.

[203] Intel, “OneDNN.” https://github.com/oneapi-src/oneDNN, 2020.

[204] Google, “XNNPACK.” https://github.com/google/XNNPACK, 2020.

[205] Ragan-Kelley, Jonathan and Barnes, Connelly and Adams, Andrew and Paris,

Sylvain and Durand, Frédo and Amarasinghe, Saman, “Halide: a language

and compiler for optimizing parallelism, locality, and recomputation in image

processing pipelines,” Acm SIGPLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[206] Tianqi Chen and Thierry Moreau and Ziheng Jiang and Lianmin Zheng and

Eddie Yan and Haichen Shen and Meghan Cowan and Leyuan Wang and Yuwei

Hu and Luis Ceze and Carlos Guestrin and Arvind Krishnamurthy, “TVM:

An Automated End-to-End Optimizing Compiler for Deep Learning,” in 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

18), (Carlsbad, CA), pp. 578–594, USENIX Association, Oct. 2018.

[207] Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Graves, Alex

and Antonoglou, Ioannis and Wierstra, Daan and Riedmiller, Martin, “Playing

Atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[208] Silver, David and Huang, Aja and Maddison, Chris J and Guez, Arthur and

Sifre, Laurent and Van Den Driessche, George and Schrittwieser, Julian and

Antonoglou, Ioannis and Panneershelvam, Veda and Lanctot, Marc and others,

“Mastering the game of Go with deep neural networks and tree search,” nature,

vol. 529, no. 7587, pp. 484–489, 2016.

187

[209] Brauckmann, Alexander and Goens, Andrés and Castrillon, Jeronimo, “A Rein-

forcement Learning Environment for Polyhedral Optimizations,” arXiv preprint

arXiv:2104.13732, 2021.

[210] Wang, Huanting and Tang, Zhanyong and Zhang, Cheng and Zhao, Jiaqi and

Cummins, Chris and Leather, Hugh and Wang, Zheng, “Automating reinforce-

ment learning architecture design for code optimization,” in Proceedings of the

ACM SIGPLAN International Conference on Compiler Construction, pp. 129–

143, 2022.

[211] Matthews, Devin A, “High-performance tensor contraction without transpo-

sition,” SIAM Journal on Scientific Computing, vol. 40, no. 1, pp. C1–C24,

2018.

[212] Abdi, Hervé and Williams, Lynne J, “Principal component analysis,” Wiley

interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–459,

2010.

[213] Radu, Valentin and Tong, Catherine and Bhattacharya, Sourav and Lane,

Nicholas D and Mascolo, Cecilia and Marina, Mahesh K and Kawsar, Fahim,

“Multimodal deep learning for activity and context recognition,” Proceedings of

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1,

no. 4, pp. 1–27, 2018.

[214] Albooyeh, Marjan and Bertolini, Daniele and Ravanbakhsh, Siamak, “Incidence

networks for geometric deep learning,” arXiv preprint arXiv:1905.11460, 2019.

[215] Grosser, Tobias and Groesslinger, Armin and Lengauer, Christian,

188

“Polly—performing polyhedral optimizations on a low-level intermediate repre-

sentation,” Parallel Processing Letters, vol. 22, no. 04, 2012.

[216] Di Napoli, Edoardo and Fabregat-Traver, Diego and Quintana-Ort́ı, Gregorio

and Bientinesi, Paolo, “Towards an efficient use of the BLAS library for mul-

tilinear tensor contractions,” Applied Mathematics and Computation, vol. 235,

pp. 454–468, 2014.

[217] Stallman, Richard M and others, Using and porting the GNU compiler collec-

tion. Free Software Foundation, 1999.

[218] Goto, Kazushige and Geijn, Robert A van de, “Anatomy of high-performance

matrix multiplication,” ACM Transactions on Mathematical Software (TOMS),

vol. 34, no. 3, pp. 1–25, 2008.

[219] Park, Neungsoo and Liu, Wenheng and Prasanna, Viktor K and Raghavendra,

Cauligi, “Efficient matrix multiplication using cache conscious data layouts,”

in HPCMO User Group Conference, 2000.

[220] Smith, Tyler M and Van De Geijn, Robert and Smelyanskiy, Mikhail and Ham-

mond, Jeff R and Van Zee, Field G, “Anatomy of high-performance many-

threaded matrix multiplication,” in 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, pp. 1049–1059, IEEE, 2014.

[221] Gunnels, John A and Henry, Greg M and Van De Geijn, Robert A, “A family

of high-performance matrix multiplication algorithms,” in International Con-

ference on Computational Science, pp. 51–60, Springer, 2001.

[222] Jia, Zhen and Zlateski, Aleksandar and Durand, Fredo and Li, Kai, “Optimizing

N-dimensional, winograd-based convolution for manycore CPUs,” in Proceed-

189

ings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pp. 109–123, 2018.

[223] Zlateski, Aleksandar and Jia, Zhen and Li, Kai and Durand, Fredo, “The

anatomy of efficient FFT and winograd convolutions on modern CPUs,” in

Proceedings of the ACM International Conference on Supercomputing, pp. 414–

424, 2019.

[224] Zlateski, Aleksandar and Seung, H Sebastian, “Compile-time optimized and

statically scheduled ND ConvNet primitives for multi-core and many-core (Xeon

Phi) CPUs,” in Proceedings of the International Conference on Supercomputing,

pp. 1–10, 2017.

[225] Grosser, Tobias and Zheng, Hongbin and Aloor, Raghesh and Simbürger, An-

dreas and Größlinger, Armin and Pouchet, Louis-Noël, “Polly-Polyhedral opti-

mization in LLVM,” in Proceedings of the International Workshop on Polyhedral

Compilation Techniques (IMPACT), vol. 2011, p. 1, 2011.

[226] Leben, Jakob and Tzanetakis, George, “Polyhedral compilation for multi-

dimensional stream processing,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 16, no. 3, pp. 1–26, 2019.

[227] Adams, Andrew and Ma, Karima and Anderson, Luke and Baghdadi, Riyadh

and Li, Tzu-Mao and Gharbi, Michaël and Steiner, Benoit and Johnson, Steven

and Fatahalian, Kayvon and Durand, Frédo and others, “Learning to optimize

halide with tree search and random programs,” ACM Transactions on Graphics

(TOG), vol. 38, no. 4, pp. 1–12, 2019.

[228] Zheng, Lianmin and Jia, Chengfan and Sun, Minmin and Wu, Zhao and

190

Yu, Cody Hao and Haj-Ali, Ameer and Wang, Yida and Yang, Jun and

Zhuo, Danyang and Sen, Koushik and others, “Ansor: Generating {High-

Performance} tensor programs for deep learning,” in 14th USENIX symposium

on operating systems design and implementation (OSDI 20), pp. 863–879, 2020.

[229] Steiner, Benoit and Cummins, Chris and He, Horace and Leather, Hugh, “Value

learning for throughput optimization of deep learning workloads,” Proceedings

of Machine Learning and Systems, vol. 3, pp. 323–334, 2021.

[230] ARM, “Cortex-A57 Software Optimization Guide,” ARM Corporation, 2016.

[231] Intel, “Intel 64 and ia-32 architectures optimization reference manual,” Intel

Corporation, 2014.

[232] Rastello, Fabrice and Ponnuswany, Sadayappan and van Amstel, Duco, A Tiling

Perspective for Register Optimization. PhD thesis, Inria, 2014.

[233] Van Zee, Field G and Van De Geijn, Robert A, “BLIS: A framework for rapidly

instantiating BLAS functionality,” ACM Transactions on Mathematical Soft-

ware (TOMS), vol. 41, no. 3, pp. 1–33, 2015.

[234] Barrachina, Sergio and Castillo, Maribel and Igual, Francisco D and Mayo,

Rafael and Quintana-Orti, Enrique S, “Evaluation and tuning of the level 3

CUBLAS for graphics processors,” in 2008 IEEE International Symposium on

Parallel and Distributed Processing, pp. 1–8, IEEE, 2008.

[235] Wang, Endong and Zhang, Qing and Shen, Bo and Zhang, Guangyong and

Lu, Xiaowei and Wu, Qing and Wang, Yajuan, “Intel math kernel library,” in

High-Performance Computing on the Intel® Xeon Phi™, pp. 167–188, Springer,

2014.

191

[236] Heinecke, Alexander and Henry, Greg and Hutchinson, Maxwell and Pabst,

Hans, “LIBXSMM: accelerating small matrix multiplications by runtime code

generation,” in SC’16: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, pp. 981–991,

IEEE, 2016.

[237] Heinecke, Alexander and Pabst, Hans and Henry, Greg, “Libxsmm: A high

performance library for small matrix multiplications,” Poster and Extended Ab-

stract Presented at SC, 2015.

[238] Khudia, Daya and Huang, Jianyu and Basu, Protonu and Deng, Summer

and Liu, Haixin and Park, Jongsoo and Smelyanskiy, Mikhail, “FBGEMM:

Enabling High-Performance Low-Precision Deep Learning Inference,” arXiv

preprint arXiv:2101.05615, 2021.

[239] Zlateski, Aleksandar and Jia, Zhen and Li, Kai and Durand, Fredo, “The

anatomy of efficient FFT and winograd convolutions on modern CPUs,” in

Proceedings of the ACM International Conference on Supercomputing, ICS ’19,

(New York, NY, USA), p. 414–424, Association for Computing Machinery, 2019.

[240] Elsen, Erich and Dukhan, Marat and Gale, Trevor and Simonyan, Karen, “Fast

sparse convnets,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 14629–14638, 2020.

[241] Heinecke, Alexander and Breuer, Alexander and Bader, Michael and Dubey,

Pradeep, “High order seismic simulations on the Intel Xeon Phi processor

(Knights Landing),” in International Conference on High Performance Com-

puting, pp. 343–362, Springer, 2016.

192

[242] Einstein, Albert, “Die grundlage der allgemeinen relativitätstheorie,” in Das

Relativitätsprinzip, pp. 81–124, Springer, 1923.

[243] Alexander Rush, “Tensor Considered Harmful.”

http://nlp.seas.harvard.edu/NamedTensor, 2018 (accessed August 26, 2020).

[244] Oliphant, Travis E, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[245] A. Qasem, G. Jin, and J. Mellor-Crummey, “Improving performance with inte-

grated program transformations,” 2004.

[246] Y. Zhao and K. Kennedy, “Scalarization using loop alignment and loop skew-

ing,” The Journal of Supercomputing, vol. 31, pp. 5–46, 2005.

[247] Cummins, Chris and Wasti, Bram and Guo, Jiadong and Cui, Brandon and

Ansel, Jason and Gomez, Sahir and Jain, Somya and Liu, Jia and Teytaud,

Olivier and Steiner, Benoit and others, “CompilerGym: robust, performant

compiler optimization environments for AI research,” in 2022 IEEE/ACM In-

ternational Symposium on Code Generation and Optimization (CGO), pp. 92–

105, IEEE, 2022.

[248] Liang, Eric and Liaw, Richard and Nishihara, Robert and Moritz, Philipp and

Fox, Roy and Goldberg, Ken and Gonzalez, Joseph and Jordan, Michael and

Stoica, Ion, “RLlib: Abstractions for distributed reinforcement learning,” in

Proceedings on Machine Learning Research, pp. 3053–3062, PMLR, 2018.

[249] Kanervisto, Anssi and Scheller, Christian and Hautamäki, Ville, “Action space

shaping in deep reinforcement learning,” in 2020 IEEE Conference on Games

(CoG), pp. 479–486, IEEE, 2020.

193

[250] Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Graves, Alex

and Antonoglou, Ioannis and Wierstra, Daan and Riedmiller, Martin, “Playing

Atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[251] Horgan, Dan and Quan, John and Budden, David and Barth-Maron, Gabriel

and Hessel, Matteo and Van Hasselt, Hado and Silver, David, “Distributed

prioritized experience replay,” arXiv preprint arXiv:1803.00933, 2018.

[252] Schulman, John and Wolski, Filip and Dhariwal, Prafulla and Radford, Alec

and Klimov, Oleg, “Proximal policy optimization algorithms,” arXiv preprint

arXiv:1707.06347, 2017.

[253] Mnih, Volodymyr and Badia, Adria Puigdomenech and Mirza, Mehdi and

Graves, Alex and Lillicrap, Timothy and Harley, Tim and Silver, David and

Kavukcuoglu, Koray, “Asynchronous methods for deep reinforcement learning,”

in Proceedings on Machine Learning Research, pp. 1928–1937, PMLR, 2016.

[254] Espeholt, Lasse and Soyer, Hubert and Munos, Remi and Simonyan, Karen and

Mnih, Vlad and Ward, Tom and Doron, Yotam and Firoiu, Vlad and Harley,

Tim and Dunning, Iain and others, “Impala: Scalable distributed deep-RL with

importance weighted actor-learner architectures,” in Proceedings on Machine

Learning Research, pp. 1407–1416, PMLR, 2018.

[255] Ashouri, Amir H and Killian, William and Cavazos, John and Palermo, Gian-

luca and Silvano, Cristina, “A survey on compiler autotuning using machine

learning,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[256] Dolan, Elizabeth D and Moré, Jorge J, “Benchmarking optimization software

with performance profiles,” Mathematical programming, vol. 91, pp. 201–213,

194

2002.

[257] TVM documentation version(0.11.dev0), “How to optimize GEMM on CPU.”

https://tvm.apache.org/docs/howto/optimizeoperators/optgemm.html.[Online; accessed28−November − 2022].

[258] Zheng, Lianmin and Liu, Ruochen and Shao, Junru and Chen, Tianqi and

Gonzalez, Joseph E and Stoica, Ion and Ali, Ameer Haj, “Tenset: A large-scale

program performance dataset for learned tensor compilers,” in Thirty-fifth Con-

ference on Neural Information Processing Systems Datasets and Benchmarks

Track (Round 1), 2021.

[259] Zheng, Size and Liang, Yun and Wang, Shuo and Chen, Renze and Sheng, Kai-

wen, “Flextensor: An automatic schedule exploration and optimization frame-

work for tensor computation on heterogeneous system,” in Proceedings of the

International Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 859–873, 2020.

[260] Abrams, Philip Samuel, “An APL machine.,” tech. rep., Stanford Linear Ac-

celerator Center, California, 1970.

[261] Van Der Walt, Stefan and Colbert, S Chris and Varoquaux, Gael, “The NumPy

array: a structure for efficient numerical computation,” Computing in science

& engineering, vol. 13, no. 2, pp. 22–30, 2011.

[262] Bader, Brett W and Kolda, Tamara G, “Algorithm 862: MATLAB tensor

classes for fast algorithm prototyping,” ACM Transactions on Mathematical

Software (TOMS), vol. 32, no. 4, pp. 635–653, 2006.

[263] Intel, “MKL Developer Reference.” https://software.intel.com/content/www/us/en/develop/documentation/mkl-

developer-reference-c/top.html, 2020.

195

[264] Epifanovsky, Evgeny and Wormit, Michael and Kuś, Tomasz and Landau, Arie

and Zuev, Dmitry and Khistyaev, Kirill and Manohar, Prashant and Kali-

man, Ilya and Dreuw, Andreas and Krylov, Anna I, “New implementation of

high-level correlated methods using a general block tensor library for high-

performance electronic structure calculations,” 2013.

[265] Solomonik, Edgar and Matthews, Devin and Hammond, Jeff R and Stanton,

John F and Demmel, James, “A massively parallel tensor contraction frame-

work for coupled-cluster computations,” Journal of Parallel and Distributed

Computing, vol. 74, no. 12, pp. 3176–3190, 2014.

[266] Frigo, Matteo and Johnson, Steven G, “FFTW: An adaptive software archi-

tecture for the FFT,” in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. 1381–1384, IEEE,

1998.

[267] Ansel, Jason and Kamil, Shoaib and Veeramachaneni, Kalyan and Ragan-

Kelley, Jonathan and Bosboom, Jeffrey and O’Reilly, Una-May and Amaras-

inghe, Saman, “Opentuner: An extensible framework for program autotuning,”

in Proceedings of the International Conference on Parallel Architectures and

Compilation, pp. 303–316, 2014.

[268] Rotem, Nadav and Fix, Jordan and Abdulrasool, Saleem and Catron, Gar-

ret and Deng, Summer and Dzhabarov, Roman and Gibson, Nick and Hege-

man, James and Lele, Meghan and Levenstein, Roman and others, “Glow:

Graph lowering compiler techniques for neural networks,” arXiv preprint

arXiv:1805.00907, 2018.

196

[269] Lattner, Chris and Amini, Mehdi and Bondhugula, Uday and Cohen, Albert

and Davis, Andy and Pienaar, Jacques and Riddle, River and Shpeisman, Ta-

tiana and Vasilache, Nicolas and Zinenko, Oleksandr, “MLIR: Scaling compiler

infrastructure for domain specific computation,” in 2021 IEEE/ACM Inter-

national Symposium on Code Generation and Optimization (CGO), pp. 2–14,

IEEE, 2021.

[270] Chen, Tianqi and Zheng, Lianmin and Yan, Eddie and Jiang, Ziheng and

Moreau, Thierry and Ceze, Luis and Guestrin, Carlos and Krishnamurthy,

Arvind, “Learning to optimize tensor programs,” in Advances in Neural In-

formation Processing Systems, pp. 3389–3400, 2018.

[271] Verdoolaege, Sven, “isl: An integer set library for the polyhedral model,” in

International Congress on Mathematical Software, pp. 299–302, Springer, 2010.

[272] Bagnara, Roberto and Hill, Patricia M and Zaffanella, Enea, “The Parma Poly-

hedra Library: Toward a complete set of numerical abstractions for the analysis

and verification of hardware and software systems,” Science of Computer Pro-

gramming, vol. 72, no. 1-2, pp. 3–21, 2008.

[273] Vasilache, Nicolas and Zinenko, Oleksandr and Theodoridis, Theodoros and

Goyal, Priya and DeVito, Zachary and Moses, William S and Verdoolaege,

Sven and Adams, Andrew and Cohen, Albert, “Tensor comprehensions:

Framework-agnostic high-performance machine learning abstractions,” arXiv

preprint arXiv:1802.04730, 2018.

[274] Trofin, Mircea and Qian, Yundi and Brevdo, Eugene and Lin, Zinan and Choro-

manski, Krzysztof and Li, David, “Mlgo: a machine learning guided compiler

197

optimizations framework,” arXiv preprint arXiv:2101.04808, 2021.

[275] B. Wasti, J. P. Cambronero, B. Steiner, H. Leather, and A. Zlateski,

“Loopstack: a lightweight tensor algebra compiler stack,” arXiv preprint

arXiv:2205.00618, 2022.

[276] OpenAI, “GPT-4 Technical Report,” arXiv:2303.08774, 2023.

[277] Chowdhery, Aakanksha and Narang, Sharan and Devlin, Jacob and Bosma,

Maarten and Mishra, Gaurav and Roberts, Adam and Barham, Paul and

Chung, Hyung Won and Sutton, Charles and Gehrmann, Sebastian and oth-

ers, “Palm: Scaling language modeling with pathways,” Journal of Machine

Learning Research, vol. 24, no. 240, pp. 1–113, 2023.

[278] Fried, Daniel and Aghajanyan, Armen and Lin, Jessy and Wang, Sida and Wal-

lace, Eric and Shi, Freda and Zhong, Ruiqi and Yih, Wen-tau and Zettlemoyer,

Luke and Lewis, Mike, “InCoder: A Generative Model for Code Infilling and

Synthesis,” arXiv:2204.05999, 2023.

[279] Suriya Gunasekar and Yi Zhang and Jyoti Aneja and Caio César Teodoro

Mendes and Allie Del Giorno and Sivakanth Gopi and Mojan Javaheripi and

Piero Kauffmann and Gustavo de Rosa and Olli Saarikivi and Adil Salim and

Shital Shah and Harkirat Singh Behl and Xin Wang and Sébastien Bubeck

and Ronen Eldan and Adam Tauman Kalai and Yin Tat Lee and Yuanzhi Li,

“Textbooks Are All You Need,” arXiv:2306.11644, 2023.

[280] Chen, Mark and Tworek, Jerry and Jun, Heewoo and Yuan, Qiming and Pinto,

Henrique Ponde de Oliveira and Kaplan, Jared and Edwards, Harri and Burda,

Yuri and Joseph, Nicholas and Brockman, Greg and Ray, Alex and Puri, Raul

198

and Krueger, Gretchen and Petrov, Michael and Khlaaf, Heidy and Sastry,

Girish and Mishkin, Pamela and Chan, Brooke and Gray, Scott and Ryder,

Nick and Pavlov, Mikhail and Power, Alethea and Kaiser, Lukasz and Bavar-

ian, Mohammad and Winter, Clemens and Tillet, Philippe and Such, Felipe

Petroski and Cummings, Dave and Plappert, Matthias and Chantzis, Fotios

and Barnes, Elizabeth and Herbert-Voss, Ariel and Guss, William Hebgen and

Nichol, Alex and Paino, Alex and Tezak, Nikolas and Tang, Jie and Babuschkin,

Igor and Balaji, Suchir and Jain, Shantanu and Saunders, William and Hesse,

Christopher and Carr, Andrew N. and Leike, Jan and Achiam, Josh and Misra,

Vedant and Morikawa, Evan and Radford, Alec and Knight, Matthew and

Brundage, Miles and Murati, Mira and Mayer, Katie and Welinder, Peter

and McGrew, Bob and Amodei, Dario and McCandlish, Sam and Sutskever,

Ilya and Zaremba, Wojciech, “Evaluating Large Language Models Trained on

Code,” arXiv:2107.03374, 2021.

[281] Roziere, Baptiste and Lachaux, Marie-Anne and Chanussot, Lowik and Lample,

Guillaume, “Unsupervised translation of programming languages,” Advances in

Neural Information Processing Systems, vol. 33, pp. 20601–20611, 2020.

[282] GitHub, “Copilot.” https://copilot.github.com/.

[283] Zheng Wang and Michael O’Boyle, “Machine Learning in Compiler Optimisa-

tion,” arXiv:1805.03441, 2018.

[284] Liang, Youwei and Stone, Kevin and Shameli, Ali and Cummins, Chris and

Elhoushi, Mostafa and Guo, Jiadong and Steiner, Benoit and Yang, Xiaomeng

and Xie, Pengtao and Leather, Hugh and Tian, Yuandong, “Learning Compiler

199

Pass Orders using Coreset and Normalized Value Prediction,” in Proceedings of

International Conference on Machine Learning (ICML), 2023.

[285] Nicholas Asher and Swarnadeep Bhar and Akshay Chaturvedi and Julie

Hunter and Soumya Paul, “Limits for Learning with Language Models,”

arXiv:2306.12213, 2023.

[286] Jing Qian and Hong Wang and Zekun Li and Shiyang Li and Xifeng Yan,

“Limitations of Language Models in Arithmetic and Symbolic Induction,”

arXiv:2208.05051, 2022.

[287] Touvron, Hugo and Martin, Louis and Stone, Kevin and Albert, Peter and

Almahairi, Amjad and Babaei, Yasmine and Bashlykov, Nikolay and Batra,

Soumya and Bhargava, Prajjwal and Bhosale, Shruti and others, “Llama 2:

Open Foundation and Fine-Tuned Chat Models,” arXiv:2307.09288, 2023.

[288] Fursin, GG and O’Boyle, Michael FP and Knijnenburg, Peter MW, “Evaluat-

ing iterative compilation,” in Languages and Compilers for Parallel Comput-

ing: 15th Workshop, LCPC 2002, College Park, MD, USA, July 25-27, 2002,

pp. 362–376, Springer, 2005.

[289] Kocetkov, Denis and Li, Raymond and Allal, Loubna Ben and Li, Jia and

Mou, Chenghao and Ferrandis, Carlos Muñoz and Jernite, Yacine and Mitchell,

Margaret and Hughes, Sean and Wolf, Thomas and others, “The Stack: 3TB

of Permissively Licensed Source Code,” arXiv:2211.15533, 2022.

[290] Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and

Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite,

200

Anish and Nabeshima, Noa and others, “The Pile: An 800GB Dataset of Diverse

Text for Language Modeling,” arXiv:2101.00027, 2020.

[291] Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis

and Brockschmidt, Marc, “CodeSearchNet Challenge: Evaluating the State of

Semantic Code Search,” arXiv:1909.09436, 2019.

[292] Armengol-Estapé, Jordi and Woodruff, Jackson and Cummins, Chris and

O’Boyle, Michael FP, “SLaDe: A Portable Small Language Model Decompiler

for Optimized Assembler,” arXiv:2305.12520, 2023.

[293] Armengol-Estapé, Jordi and O’Boyle, Michael FP, “Learning C to x86 Trans-

lation: An Experiment in Neural Compilation,” arXiv:2108.07639, 2021.

[294] Gage, Philip, “A New Algorithm for Data Compression,” C Users Journal,

vol. 12, no. 2, 1994.

[295] Loshchilov, Ilya and Hutter, Frank, “Decoupled Weight Decay Regularization,”

arXiv:1711.05101, 2017.

[296] Papineni, Kishore and Roukos, Salim and Ward, Todd and Zhu, Wei-Jing,

“Bleu: a method for automatic evaluation of machine translation,” in Proceed-

ings of the Annual Meeting of the Association for Computational Linguistics,

pp. 311–318, 2002.

[297] Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mah-

moud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo, “Overview

of the PAN@ FIRE 2020 task on the authorship identification of SOurce COde,”

in Proceedings of the Annual Meeting of the Forum for Information Retrieval

Evaluation, pp. 4–8, 2020.

201

[298] Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi, “Convolutional

neural networks over tree structures for programming language processing,” in

Proceedings of the AAAI conference on Artificial Intelligence, vol. 30, 2016.

[299] Livinskii, Vsevolod and Babokin, Dmitry and Regehr, John, “Random test-

ing for C and C++ compilers with YARPGen,” Proceedings of the ACM on

Programming Languages, vol. 4, no. OOPSLA, pp. 1–25, 2020.

[300] Armengol-Estapé, Jordi and Woodruff, Jackson and Brauckmann, Alexander

and Magalhães, José Wesley de Souza and O’Boyle, Michael FP, “ExeBench:

an ML-scale dataset of executable C functions,” in Proceedings of the ACM SIG-

PLAN International Symposium on Machine Programming, pp. 50–59, 2022.

[301] Haj-Ali, Ameer and Huang, Qijing Jenny and Xiang, John and Moses, William

and Asanovic, Krste and Wawrzynek, John and Stoica, Ion, “Autophase: Jug-

gling hls phase orderings in random forests with deep reinforcement learning,”

Proceedings of Machine Learning and Systems, vol. 2, pp. 70–81, 2020.

[302] Michal Paszkowski, “LLVM Canon.” https://github.com/michalpaszkowski/LLVM-

Canon.

[303] McKeeman, William M, “Differential Testing for Software,” Digital Technical

Journal, vol. 10, no. 1, 1998.

[304] Kisuki, Toru and Knijnenburg, Peter MW and O’Boyle, Michael FP, “Com-

bined selection of tile sizes and unroll factors using iterative compilation,” in

Proceedings International Conference on Parallel Architectures and Compilation

Techniques, pp. 237–246, IEEE, 2000.

202

[305] Ogilvie, William F and Petoumenos, Pavlos and Wang, Zheng and Leather,

Hugh, “Minimizing the cost of iterative compilation with active learning,” in In-

ternational Symposium on Code Generation and Optimization (CGO), pp. 245–

256, IEEE, 2017.

[306] Ashouri, Amir H and Elhoushi, Mostafa and Hua, Yuzhe and Wang, Xiang and

Manzoor, Muhammad Asif and Chan, Bryan and Gao, Yaoqing, “MLGOPerf:

An ML Guided Inliner to Optimize Performance,” arXiv:2207.08389, 2022.

[307] Cummins, Chris and Petoumenos, Pavlos and Wang, Zheng and Leather,

Hugh, “End-to-end deep learning of optimization heuristics,” in 2017 26th In-

ternational Conference on Parallel Architectures and Compilation Techniques

(PACT), pp. 219–232, IEEE, 2017.

[308] Phothilimthana, Phitchaya Mangpo and Sabne, Amit and Sarda, Nikhil and

Murthy, Karthik Srinivasa and Zhou, Yanqi and Angermueller, Christof and

Burrows, Mike and Roy, Sudip and Mandke, Ketan and Farahani, Rezsa and

others, “A flexible approach to autotuning multi-pass machine learning com-

pilers,” in 2021 30th International Conference on Parallel Architectures and

Compilation Techniques (PACT), pp. 1–16, IEEE, 2021.

[309] Hosseini, Iman and Dolan-Gavitt, Brendan, “Beyond the C: Retargetable De-

compilation using Neural Machine Translation,” arXiv:2212.08950, 2022.

[310] Xia, Chunqiu Steven and Wei, Yuxiang and Zhang, Lingming, “Automated

Program Repair in the Era of Large Pre-Trained Language Models,” in Pro-

ceedings of the International Conference on Software Engineering, ICSE ’23,

p. 1482–1494, IEEE Press, 2023.

203

[311] Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier

and Lachaux, Marie-Anne and Lacroix, Timothée and Rozière, Baptiste and

Goyal, Naman and Hambro, Eric and Azhar, Faisal and others, “Llama: Open

and efficient foundation language models,” arXiv preprint arXiv:2302.13971,

2023.

[312] Ding, Jiayu and Ma, Shuming and Dong, Li and Zhang, Xingxing and Huang,

Shaohan and Wang, Wenhui and Wei, Furu, “LongNet: Scaling Transformers

to 1,000,000,000 Tokens,” arXiv:2307.02486, 2023.

[313] Chen, Shouyuan and Wong, Sherman and Chen, Liangjian and Tian, Yuan-

dong, “Extending Context Window of Large Language Models via Positional

Interpolation,” arXiv:2306.15595, 2023.

[314] Sun, Yutao and Dong, Li and Patra, Barun and Ma, Shuming and Huang,

Shaohan and Benhaim, Alon and Chaudhary, Vishrav and Song, Xia and Wei,

Furu, “A Length-Extrapolatable Transformer,” arXiv:2212.10554, 2022.

[315] Wei, Jason and Wang, Xuezhi and Schuurmans, Dale and Bosma, Maarten and

Xia, Fei and Chi, Ed and Le, Quoc V and Zhou, Denny and others, “Chain-

of-thought prompting elicits reasoning in large language models,” Advances in

Neural Information Processing Systems, vol. 35, pp. 24824–24837, 2022.

[316] Gao, Luyu and Madaan, Aman and Zhou, Shuyan and Alon, Uri and Liu,

Pengfei and Yang, Yiming and Callan, Jamie and Neubig, Graham, “Pal:

Program-aided language models,” in Proceedings on Machine Learning Re-

search, pp. 10764–10799, PMLR, 2023.

[317] Cobbe, Karl and Kosaraju, Vineet and Bavarian, Mohammad and Chen, Mark

204

and Jun, Heewoo and Kaiser, Lukasz and Plappert, Matthias and Tworek,

Jerry and Hilton, Jacob and Nakano, Reiichiro and others, “Training Verifiers

to Solve Math Word Problems,” arXiv:2110.14168, 2021.

[318] Xiao, Guangxuan and Lin, Ji and Seznec, Mickael and Wu, Hao and Demouth,

Julien and Han, Song, “Smoothquant: Accurate and efficient post-training

quantization for large language models,” in Proceedings on Machine Learning

Research, pp. 38087–38099, PMLR, 2023.

[319] Ackley, David H and Hinton, Geoffrey E and Sejnowski, Terrence J, “A learning

algorithm for Boltzmann machines,” Cognitive science, vol. 9, no. 1, pp. 147–

169, 1985.

[320] Ficler, Jessica and Goldberg, Yoav, “Controlling linguistic style aspects in neu-

ral language generation,” arXiv preprint arXiv:1707.02633, 2017.

[321] Fan, Angela and Lewis, Mike and Dauphin, Yann, “Hierarchical neural story

generation,” arXiv preprint arXiv:1805.04833, 2018.

[322] Caccia, Massimo and Caccia, Lucas and Fedus, William and Larochelle, Hugo

and Pineau, Joelle and Charlin, Laurent, “Language gans falling short,” arXiv

preprint arXiv:1811.02549, 2018.

[323] Ahmad, Baleegh and Thakur, Shailja and Tan, Benjamin and Karri, Ramesh

and Pearce, Hammond, “Fixing Hardware Security Bugs with Large Language

Models,” arXiv preprint arXiv:2302.01215, 2023.

[324] Da Silva, Anderson Faustino and Kind, Bruno Conde and de Souza Magalhães,

José Wesley and Rocha, Jerônimo Nunes and Guimaraes, Breno Campos Fer-

205

reira and Pereira, Fernando Magno Quinão, “Anghabench: A suite with one mil-

lion compilable c benchmarks for code-size reduction,” in 2021 IEEE/ACM In-

ternational Symposium on Code Generation and Optimization (CGO), pp. 378–

390, IEEE, 2021.

[325] Yang, Chengrun and Wang, Xuezhi and Lu, Yifeng and Liu, Hanxiao and Le,

Quoc V and Zhou, Denny and Chen, Xinyun, “Large language models as opti-

mizers,” arXiv preprint arXiv:2309.03409, 2023.

[326] Ravfogel, Shauli and Goldberg, Yoav and Goldberger, Jacob, “Conformal Nu-

cleus Sampling,” arXiv preprint arXiv:2305.02633, 2023.

[327] Li, Dong and Jin, Ruoming and Gao, Jing and Liu, Zhi, “On sampling top-k rec-

ommendation evaluation,” in Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 2114–2124, 2020.

[328] Xie, Yuxi and Kawaguchi, Kenji and Zhao, Yiran and Zhao, Xu and Kan, Min-

Yen and He, Junxian and Xie, Qizhe, “Self-Evaluation Guided Beam Search for

Reasoning,” in Thirty-seventh Conference on Neural Information Processing

Systems, 2023.

[329] Kool, Wouter and Van Hoof, Herke and Welling, Max, “Stochastic beams and

where to find them: The gumbel-top-k trick for sampling sequences without

replacement,” in Proceedings on Machine Learning Research, pp. 3499–3508,

PMLR, 2019.

[330] Willard, Brandon T and Louf, Rémi, “Efficient guided generation for large

language models,” arXiv e-prints, 2023.

206

[331] Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei,

Dario and Sutskever, Ilya and others, “Language models are unsupervised mul-

titask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[332] Holtzman, Ari and Buys, Jan and Forbes, Maxwell and Bosselut, Antoine and

Golub, David and Choi, Yejin, “Learning to write with cooperative discrimina-

tors,” arXiv preprint arXiv:1805.06087, 2018.

[333] Vijayakumar, Ashwin K and Cogswell, Michael and Selvaraju, Ramprasath R

and Sun, Qing and Lee, Stefan and Crandall, David and Batra, Dhruv, “Diverse

beam search: Decoding diverse solutions from neural sequence models,” arXiv

preprint arXiv:1610.02424, 2016.

[334] Batra, Dhruv and Yadollahpour, Payman and Guzman-Rivera, Abner and

Shakhnarovich, Gregory, “Diverse m-best solutions in markov random fields,”

in Computer Vision–ECCV 2012: 12th European Conference on Computer Vi-

sion, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pp. 1–16,

Springer, 2012.

[335] Gumbel, Emil Julius, “Statistical theory of extreme valuse and some practical

applications,” Nat. Bur. Standards Appl. Math. Ser. 33, 1954.

